

南京观海微电子有很公司 GoHi Microelectronics Co., Ltd.

GH8323-i1 Datasheet

1366RGBx768 dots, 16.7M color,α-Si TFT LCD single chip driver (preliminary v0.12)

Revision History

Version	Date	Description of modification
Preliminary v0.0	2023/06/01	New setup
Preliminary v0.10	2023/07/04	Fix Source channel select
Preliminary v0.11	2023/07/10	Fix Pin Description
Preliminary v0.12	2023/07/17	Update multiple points

Contents

1 General Description	8
2 Features	
3 Device Overview	
3.1 Device Block Diagram	10
3.2 Power on/off sequence	11
3.2.1 Power on sequence	11
3.2.2 Power off sequence	12
3.3 Output voltage range	
3.4 LCD Power Generation Scheme	
3.5 DC/DC Converter Circuit	
3.5.1 DC/DC power mode 1 (VSP/VSN/VGH/VGL external power)	
3.5.2 External component table for VSP/VSN/VGH/VGL external power	
3.5.3 DC/DC power mode 2(VSP/VSN Internal Charge Pump)	17
3.5.4 External component table for VSP/VSN Internal Charge Pump	
3.5.5 DC/DC power mode 3 (VSP/VSN external power with GH6121)	
3.5.6 External component table for VSP/VSN external power with GH6121	
3.5.7 DC/DC power mode 4(VSP/VSN external power)	20
3.5.8 External component table for VSP/VSN external power	21
4 Maximum Layout Resistance	22
5 Pin Description	
6 Interface	
6.1 SPI Interface	27
6.1.1 SPI interface write mode	27
6.1.2 SPI interface read mode	
6.2 I2C Interface	
6.2.1 I2C format	
6.2.2 Command Write Sequence of I2C Interface	
	31
6.2.3 Command Read Sequence of I2C Interface	
6.2.3 Command Read Sequence of I2C Interface	
6.2.3 Command Read Sequence of I2C Interface 6.3 RGB interface	31
6.2.3 Command Read Sequence of I2C Interface6.3 RGB interface6.3.1 General timing diagram	31 32
 6.2.3 Command Read Sequence of I2C Interface 6.3 RGB interface 6.3.1 General timing diagram 6.3.2 RGB Data format 	31 32 33
 6.2.3 Command Read Sequence of I2C Interface	31 32 33 33

6.5 DSI system interface	
6.5.1 Command mode, Video mode and Virtual Channel	37
6.5.2 Power-up Sequence Example	
6.5.3 DSI Format	
6.5.4 DSI Protocol	41
6.5.5 Multiple Packets per Transmission	41
6.5.6 Endian Policy	43
6.5.7 Packet Structure	
6.5.8 Long Packet	43
6.5.9 Short Packet	
6.5.10 Common Packet Elements	45
6.5.11 Data Identifier Byte	45
6.5.12 Virtual Channel Identifier – VC field, DI[7:6]	46
6.5.13 Data Type Field DT[5:0]	46
6.5.14 ECC	
6.5.15 DSI packet	
6.5.16 Processor-sourced Packets	46
6.5.17 Packed Pixel Stream, 16-bit Format, Long Packet	47
6.5.18 Packed Pixel Stream, 18-bit Format, Long Packet	47
6.5.19 Pixel Stream, 18-bit Loosely Format, Long Packet	48
6.5.20 Packed Pixel Stream, 24-bit Format, Long Packet	49
6.5.21 Peripheral to Processor Transmission	49
6.5.22 Appropriate Responses to Commands and ACK Requests	50
6.5.23 Peripheral-to-Processor Packet Description	51
6.5.24 Format of Acknowledge and Error Report and Read Response Data Type	51
6.5.25 Video Mode Interface Timing	52
6.5.26 Transmission Packet Sequences	52
6.5.27 Non-Burst sync pulse mode	53
6.5.28 Non-Burst sync event mode	54
6.5.29 Burst mode	54
6.6 Error-Correcting Code and Checksum	55
6.6.1 Error-Correcting Code(ECC)	55
6.6.2 Checksum Generation for Long Packet Payloads	56
6.7 DPHY	57
6.7.1 Lane Module	57

GI 南京观海獭电子有限公司 GoHi Microelectronics Co., Ltd.

GH8323-i1 Datasheet

6.7.2 Lane Module Type of Clock Lane, Data0, Data1 and Data2	
6.7.3 Master and Slave	
6.7.4 Lane States and Line Levels	
6.7.5 Bi-directional Data Lane Turnaround	
6.8 Escape Mode	
6.9 Remote Trigger	61
6.10 Low-Power Data Transmission(LPDT)	61
6.11 Ultra-Low Power State(ULPS)	
6.12 TE Trigger	
6.13 High Speed Transmission	
6.13.1 Burst Payload Data	
6.13.2 Start-of-Transmission	
6.13.3 End-of-Transmission	
6.13.4 High Speed Data Transmission	
6.13.5 High Speed Clock Transmission	
6.14 System Power state	
6.15 Initialization	
6.16 Global Operation Flow Diagram	65
7 Gamma characteristic correction function	66
8 Function Description	67
8.1 Digital Gamma (separate RGB gamma)	67
8.2 CABC	67
8.3 Cascade	
8.4 BIST	
8.4.1 BIST function	
8.4.2 BIST pattern	
9 Command	71
9.1 Command List	71
9.1.1 Standard command	71
9.1.2 Standard Command Accessibility	74
9.1.3 Standard Command Default Modes and Values	75
9.2 Command Description	76
9.2.1 NoP (00h)	76
9.2.2 SWRESET: Software Reset (01h)	
9.2.3 RDDIDIF: Read Display Identification Information (04h)	77

GI 南京观海獭电子有限公司 GoHi Microelectronics Co., Ltd.

10

9.2.4 RDDST: Read Display Status (09h)	
9.2.5 RDDPM: Read Display Power Mode (0Ah)	80
9.2.6 RDDMATCDL: Read Display MADCTL (0Bh)	81
9.2.7 RDDCOLMOD: Read Display COLMOD (0Ch)	82
9.2.8 Read Display Image Mode (0Dh)	83
9.2.9 RDDSM: Read Display Signal Mode (0Eh)	
9.2.10 RDDSDR: Read Display Self-Diagnostic Result (0Fh)	85
9.2.11 LPIN: Enter Sleep In Mode (10h)	
9.2.12 LPOUT:Exit Sleep In Mode(11h)	
9.2.13 NORON: Enter Normal Mode (13h)	
9.2.14 INVOFF: Display Inversion Off (20h)	
9.2.15 INVON: Display Inversion On (21h)	
9.2.16 ALLPOFF: All Pixel Off (22h)	
9.2.17 ALLPON: All Pixel On (23h)	
9.2.18 DISPOFF: Display Off (28h)	
9.2.19 DISPON: Display On (29h)	94
9.2.20 TEOFF: Tearing Effect Line OFF (34h)	
9.2.21 TEON: Tearing Effect Line ON (35h)	
9.2.22 MADCTL: Memory Access Control(36h)	
9.2.23 IDMOFF: Idle Mode Off (38h)	
9.2.24 IDMON: Idle Mode On (39h)	
9.2.25 COLMOD: Interface Pixel Format (3Ah)	
9.2.26 TESL: Set Tear Effect Scanline (44h)	
9.2.27 GETSCAN: Get the Current Scanline (45h)	
9.2.28 WRDISBV: Write Display Brightness (51h)	
9.2.29 RDDISBV: Read Display Brightness Value (52h)	
9.2.30 WRCTRLD: Write CTRL Display (53h)	
9.2.31 RDCTRLD: Read CTRL Value Display (54h)	
9.2.32 RDDDB: Read DDB Start (A1h)	
9.2.33 RDDDBCON: Read DDB Continue (A8h)	
9.2.34 RDID1: Read ID1 (DAh)	
9.2.35 RDID2: Read ID2 (DBh)	112
9.2.36 RDID3: Read ID3 (DCh)	113
) Electrical Specifications	
10.1 Absolute maximum ratings	

GI 南京观海微电子有很公司 GoHi Microelectronics Co., Ltd.

GH8323-i1 Datasheet

10.2 DC Characteristics	
10.2.1 RGB Interface DC electrical characteristics	
10.2.2 LVDS DC electrical characteristics	
10.3 AC Characteristics	
10.3.1 Reset input timings	
10.3.2 SPI electronic characteristic	
10.3.3 LVDS electronic characteristics	
10.3.4 DSI D-PHY electronic characteristics	
11 Chip Information	127
11.1 Pad Assignment	
11.2 Alignment Mark (Unit: um)	
12 Application Diagram with Panel	
12.1 GIP Application_1366RGBx768 (Normal Dual Gate Driving)	
12.2 GIP Application_1024RGBx768 (Normal Dual Gate Driving)	
12.3 GIP Application_1280RGBx800 (Normal Dual Gate Driving)	
12.4 Cascade Application1_1366RGBx768 (on LVDS mode)	
12.5 Cascade Application2_1366RGBx768 (on LVDS mode)	
12.6 Cascade Application3_1366RGBx768 (on LVDS mode)	
12.7 Cascade Application4_1366RGBx768 (on LVDS mode)	
12.8 Cascade Application5_1280RGBx800 (on LVDS mode)	
12.9 Cascade Application6_1280RGBx800 (on LVDS mode)	
12.10 Dual gate & GOA Application note	
12.11 Normal Dual gate & GOA Application note	
13 Ordering Information	141

1 General Description

The GH8323-i1 is a highly integrated solution for small size to middle size α -Si & LTPS TFT-LCD panels. This chip integrates 2054 channel source driver a timing controller for color TFT LCD panel. The chip support LVDS & MIPI & RGB interface. And support the function setting through R/W SPI/3-wire serial interface.

2 Features

- Single chip solution for a WXGA a-Si type LCD display
- Integrate 2054 channel source driver and timing controller
- Display resolution:
 - Dual gate (Gate Ln*2,max2400)
 - 1366 RGB x 768
 - 1280 RGB x 800
 - 1024 RGB x 600
 - 960 RGB x 640
 - 800 RGB x 600
- Display interface (support 6/8 bits)
 - RGB interface
 - SYNC + DE mode
 - SYNC only mode
 - MIPI-DSI(Display Serial Interface)interface
 - Support DSI Version 1.1
 - Support D-PHY version 1.00
 - LVDS interface(VESA/JEIDA)
- Support normally black and white panel
- Provide total 17 register value for gamma correction adjustment
- Support BIST mode
- Support GAS function for abnormal power off
- Support SPI/I2C interface
- Support dual gate
- Support Zigzag
- Support CABC
- Support eye protection mode
- Source driver output with 8-bit DAC
- OTP memory to store initialization register settings
 - OTP for GOA setting
 - OTP for gamma setting
 - 3 times OTP for VCOM setting
- Input power supply:

🚺 南京观海徽电子有很公司 GoHi Microelectronics Co., Ltd.

- VDDR = 1.65V to 3.6V (power supply for digital circuit)
- VDDI = 1.65V to 3.6V (power for interface circuit)
- VDDM = 1.65V to 3.6V (power for high speed interface)
- VCIP/VCI = 2.5V to 3.6V (power supply for analog/charge pump circuit)
- VCOM = 0V to -3.0V
- VSP = 4.5V to 6V (power supply for source circuit)
- VSN = -4.5V to -6V (power supply for source circuit)
- VGH = 8V to 20V (power supply for GOA circuit)
- VGL = -6V to -18V (power supply for GOA circuit)
- VGH, VGL: VGH-VGL<32V
- Output voltage ranges:
 - Analog voltage range for VSP:4.5V to 6.0V
 - Analog voltage range for VSP:4.5V to 6.0V
 - Positive source output voltage level: VGMP = 3V to VSP-0.2V
 - Negative source output voltage level: VGMN = -3V to VSN+0.2V
 - Positive gate driver output volage level: VGH = 8V to 20V
 - Negative gate driver output voltage level: VGL= -6V to -18V
 - VCOM = 0V to -3V
 - VGH, VGL: VGH VGL<32V
- COG package
- Operating temperature (T_A): -30°C to + 105°C
- Storage temperature (T_{STG}): -55°C to + 125°C

3 Device Overview

3.1 Device Block Diagram

3.2 Power on/off sequence

3.2.1 Power on sequence

3.2.2 Power off sequence

VDDI,VDDM		t _{Ramp1}
VDDI,VDDIM VDDR	·	
		tpwoff2 tpwoff1
VCI,VCIP		
VSP		90%
		10%
		t _{Ramp2}
		ckamp2
	:	10%
VSN	t _{PWOFF}	
-		
-		t _{Ramp3}
STBYB	\setminus K \rightarrow	
	. 10%	
-		
HW Reset	K t _{RSTHtol}	
	<pre>tvideo_OFF </pre>	
]		
LVDS,	Video Packet	
RGB		
-	90%	
Backlight		
Power		
Status	SLPOUT Mode	SLPIN Mode
Ţ,		

3.3 Output voltage range

南京观海微电子有很公司 GoHi Microelectronics Co., Ltd.

GH8323-I1 generates corresponding voltage with α -Si LCD panel by internal power supply circuit. Please set up each voltage output according to the LCD panel.

Name	Function	Set up value	Note
VSP	DC/DC converter circuit output	+4.5V ~ +6.0V	
VSN	DC/DC converter circuit output	-4.5V ~ -6.0V	
VGMP	Reference voltage for gamma circuit	+3.0V ~ VSP-0.2V	Reference register
VGMN	Reference voltage for gamma circuit	-3.0V ~ VSN+0.2V	Reference register
VGH	Positive gate driver output voltage level	+8V ~ +20V	Depend on VSP & VSN
VGL	Negative gate driver output voltage level	-6V ~ -18V	Depend on VSP & VSN
VCOM	VCOM DC voltage	0V ~ -3V	
VDDH	Analog power for High speed interface circuit	1.5V	Depend on DSI I/F
VDDD	Digital power for internal digital circuit.	1.5V	

3.4 LCD Power Generation Scheme

3.5 DC/DC Converter Circuit

3.5.1 DC/DC power mode 1 (VSP/VSN/VGH/VGL external power)

PM[1:0]=00 (5 power mode)

3.5.2 External component table for VSP/VSN/VGH/VGL external power

Pad Name	Symbol	Connection	Typical Value
VCI / VCIP	C1 (Option)	Connect to Capacitor: VCI/VCIP(+) (-)VSSA	2.2 µF / 6.3V
VSP	C2 (Option)	Connect to Capacitor: VSN(+) (-) VSSA	2.2 µF / 10V
VSN	C3 (Option)	Connect to Capacitor: VSP(+) (-)VSSA	2.2 μF / 10V
VDDI / VDDR / VDDM	C4 (Option)	Connect to Capacitor: VDDI(+) (-)VSSA	2.2 µF / 6.3V
VGH	C5 (Option)	Connect to Capacitor: VGH(+) (-)VSSA	2.2 µF / 25V
	C6 (Option)	Connect to Capacitor: VGL(-) (+)VSSA	2.2 µF / 25V
VGL	D2	Connect to Schottky Diode(VR≥30V): VGL(-)▶Ĵ (+)VSSA	VF < 0.4V / 20mA @ 25°C,VR ≥30V (Recommended diode: RB521S-30)
	D3	Connect to Schottky Diode(VR≥30V): VGL(-)▶∫ (+)VSN	VF < 0.4V / 20mA @ 25°C,VR ≥30V (Recommended diode: RB521S-30)
VCOM	C7	Connect to Capacitor: VCOM(-) (+)VSSA	2.2 μF / 6.3V
VDDD	C8	Connect to Capacitor: VDD(+) (-)VSS	2.2 µF / 6.3V
VDDH	C9	Connect to Capacitor: VDDH(+) (-)VSSM	2.2 µF / 6.3V

3.5.3 DC/DC power mode 2(VSP/VSN Internal Charge Pump)

PM[1:0]=01 (2 power mode)

3.5.4 External component table for VSP/VSN Internal Charge Pump

Pad Name	Symbol	Connection	Typical Value
VCI / VCIP	C1 (Option)	Connect to Capacitor: VCI/VCIP(+) (-)VSSA	2.2 µF / 6.3V
C11P –C11N	C2	Connect to Capacitor: C11P(+) (-) C11N	1.0 µF / 10V
C12P – C12N	C3	Connect to Capacitor: C12P(+) (-) C12N	1.0 µF / 10V
VSP	C6	Connect to Capacitor: VSN(+) (-) VSSA	2.2 μF / 10V
C31P – C31N	C7	Connect to Capacitor: C31P(+) (-) C31N	1.0 µF / 10V
VSN	C9	Connect to Capacitor: VSP(+) (-) VSSA	2.2 μF / 10V
VDDI / VDDR / VDDM	C10 (Option)	Connect to Capacitor: VDDI(+) (-)VSSA	2.2 µF / 6.3V
C41P – C41N	C11	Connect to Capacitor: C41P(+) (-) C41N	1.0 µF / 25V
C42P – C42N	C12	Connect to Capacitor: C42P(+) (-) C42N	1.0 µF / 25V
VGH	C13	Connect to Capacitor: VGH(+) (-) VSSA	2.2 μF / 25V
	C14	Connect to Capacitor: NC(+) (-) NC	1.0 µF / 25V
VGL	D1	Connect to Schottky Diode(VR≥30V): VGL(-)▶Ĵ (+) VSSA	VF < 0.4V / 20mA@ 25°C,VR ≥30V (Recommended diode: RB521S-30)
	D2	Connect to Schottky Diode(VR≥30V): VGL(-)▶∫ (+) VSN	VF < 0.4V / 20mA @ 25°C,VR ≥30V (Recommended diode: RB521S-30)
VCOM	C15	Connect to Capacitor: VCOM(-) (+) VSSA	2.2 µF / 6.3V
VDDD	C16	Connect to Capacitor: VDD(+) (-)VSS	2.2 µF / 6.3V
VDDH	C17	Connect to Capacitor: VDDH(+) (-) VSSM	2.2 µF / 6.3V

3.5.5 DC/DC power mode 3 (VSP/VSN external power with GH6121)

PM[1:0]=10 (2 power mode)

Figure 3.4: VSP/VSN external power with GH6121 power IC

3.5.6 External component table for VSP/VSN external power with GH6121

Pad Name	Symbol	Connection	Typical Value
VCI / VCIP	C1 (Option)	Connect to Capacitor: VCI/VCIP(+) (-) VSSA	2.2 µF / 6.3V
VSP	C2 (Option)	Connect to Capacitor: VSN(+) (-)VSSA	2.2 μF / 10V
VSN	C3 (Option)	Connect to Capacitor: VSP(+) (-)VSSA	2.2 μF / 10V
VDDI / VDDR/ VDDM	C4 (Option)	Connect to Capacitor: VDDI(+) (-) VSSA	2.2 µF / 6.3V
C41P – C41N	C8	Connect to Capacitor: C41P(+) (-) C41N	1.0 µF / 25V
C42P – C42N	C9	Connect to Capacitor: C42P(+) (-) C42N	1.0 µF / 25V
VGH	C10	Connect to Capacitor: VGH(+) (-) VSSA	2.2 μF / 25V
	C11	Connect to Capacitor: VGL(-) (+) VSSA	2.2 µF / 25V
VGL	D1 (Option)	Connect to Schottky Diode(VR≥30V): VGL(-)▶∫ (+)VSSA	VF < 0.4V / 20mA @ 25°C,VR ≥30V (Recommended diode: RB521S-30)
	D2	Connect to Schottky Diode(VR≥30V): VGL(-)▶∫ (+) VSN	VF < 0.4V / 20mA @ 25°C,VR ≥30V (Recommended diode: RB521S-30)
VCOM	C12	Connect to Capacitor: VCOM(-) (+)VSSA	2.2 µF / 6.3V
VDDD	C13	Connect to Capacitor: VDD(+) (-) VSS	2.2 µF / 6.3V
VDDH	C14	Connect to Capacitor: VDDH(+) (-) VSSM	2.2 µF / 6.3V

3.5.7 DC/DC power mode 4(VSP/VSN external power)

PM[1:0]=11 (3 power mode)

3.5.8 External component table for VSP/VSN external power

Pad Name	Symbol	Connection	Typical Value
VCI / VCIP	C1 (Option)	Connect to Capacitor: VCI/VCIP(+) (-) VSSA	2.2 µF / 6.3V
VSP	C2 (Option)	Connect to Capacitor: VSN(+) (-) VSSA	2.2 μF / 10V
VSN	C3 (Option)	Connect to Capacitor: VSP(+) (-) VSSA	2.2 µF / 10V
VDDI / VDDR / VDDM	C4 (Option)	Connect to Capacitor: VDDI(+) (-)VSSA	2.2 µF / 6.3V
C41P – C41N	C5	Connect to Capacitor: C41P(+) (-) C41N	1.0 µF / 16V
C42P – C42N	C6	Connect to Capacitor: C42P(+) (-) C42N	1.0 µF / 16V
VGH	C7	Connect to Capacitor: VGH(+) (-) VSSA	2.2 µF / 25V
	C8	Connect to Capacitor: VGL(-) (+)VSSA	2.2 µF / 25V
VGL	D1	Connect to Schottky Diode(VR≥30V): VGL(-)▶∫ (+) VSSA	VF < 0.4V / 20mA @ 25°C, VR ≥30V (Recommended diode: RB521S-30)
	D2	Connect to Schottky Diode(VR≥30V): VGL(-)▶∫ (+) VSN	VF < 0.4V / 20mA @ 25°C, VR ≥30V (Recommended diode: RB521S-30)
VCOM	C9	Connect to Capacitor: VCOM(-) (+) VSSA	2.2 µF / 6.3V
VDDD	C10	Connect to Capacitor: VDD(+) (-)VSS	2.2 µF / 6.3V
VDDH	C11	Connect to Capacitor: VDDH(+) (-)VSSM	2.2 µF / 6.3V

21

4 Maximum Layout Resistance

Name	Pin Definition	Maximum series resistance	Unit
VCI/VCIP, VDDI, VDDM, VDDR	Power supply	5	Ω
VCOM	Output, Capacitor Connection	5	Ω
VDDD, VDDH	Output, Capacitor Connection	5	Ω
VGMP,VGMN	Input / Output	5	Ω
VSP, VSN	Input / Output, Capacitor Connection	5	Ω
VGH, VGL	Input / Output, Capacitor Connection	10	Ω
C11P, C11N, C12P, C12N, C31P, C31N, C41P, C41N, C42P, C42N,	Capacitor Connection	5	Ω
VSS, VSSA, VSSM, VSSP	Power Supply	5	Ω
VPP	OTP Power Supply	20	Ω
DSW [1:0], IM[1:0], ADDR[1:0], PM[1:0], LANE[1:0], GIP_LRSEL[1:0]	Input	100	Ω
DIR, UPDN, REV, STBYB, LVFMT, LVBIT, CMD_SEL,BIST, DITHER_EN, HFRC_EN, CS_GIP, CAS, PNSW	Input	100	Ω
CSX, RESX, SCL, SCL_I2C	Input	100	Ω
SDA, SDA_I2C	Input / Output	100	Ω
DB[23:0], CK, VS, HS, DE	Input	100	Ω
DP<0>, DN<0>	Input / Output	5	Ω
DP<1>, DN<1>	Input	5	Ω
DP<2>, DN<2>	Input	5	Ω
DP<3>, DN<3>	Input	5	Ω
CKP, CKN	Input	5	Ω
TEST_EN	Input	100	Ω
TSOP, TSON, PWR_EN, TESTO[9:0], TE, ERR, LEDPWM, LEDON, T_S[4:1]	Output	100	Ω
SYNC_L[4:0], SYNC_R[4:0]	Input / Output	10	Ω
GOUTL[22:1], GOUTR[22:1]	Output	10	Ω
PASS1_R, PASS2_R, PASS1_L, PASS2_L	Input / Output	5	Ω

5 Pin Description

G

Pin Name	Pin Type	Description								
DP [0]/DN [0] DP [1]/DN [1] DP [2]/DN [2]	Input	MIPI or LVDS data input Select by LANE[1:0]								
DP [3]/DN [3]										
CKP/CKN	Input	MIPI/LVDS clock Input								
DB[23:0]	Input	Display data input in RGB interface, Let it to open or GND, if not used.								
СК	Input	Pixel clock input in RGB interface. Must be connected to GND or open if not used.								
DE	Input	Data enable input in RGB interface. Must be connected to GND or open if not used.								
HS	Input	Horizontal sync input in RGB interface. Must be connected to GND or open if not used.								
VS	Input	Vertical sync input in RGB interface. Must be connected to GND or open if not used.								
		MIPI/LVDS Interface selection								
		IM[1:0] Interface								
IM[1:0]	Input	00 MIPI 01 LVDS(default)								
		10 RGB								
		11 Not used								
		MIPI data lane swapping selection pins (default:00)								
		MIPI interface								
		DSW<1:0> PNSW D0P D0N D1P D1N CKP CKN D2P D2N D3P D3N 2'b00 0 D3P D3N D2P D2N CKP CKN D1P D1N D0P D0N								
	Input			2'b01 1 D0N D0P D1N D1P CKN CKP D2N D2P D3N D3P						
			2'b10 0 D2P D2N D1P D1N CKP CKN D0P D0N D3P D3N 1 D2N D2P D1N D1P CKN CKP D0N D3P D3N							
				21b11 0 D3P D3N D0P D0N CKP CKN D1P D1N D2P D2N						
DSW[1:0]		2011 1 D3N D3P D0N D0P CKN CKP D1N D1P D2N D2P LVDS data/clk Lane swapping selection pins (default:00)								
		LVDS interface								
					DSW<1:0> PNSW D0P D0N D1P D1N CKP CKN D2P D2N D3P D3N 0 D3P D3N D2P D2N D1P D1N D0P D0N CKP CKN					
						2 DUU 1 D3N D3P D2N D2P D1N D1P D0N D0P CKN CKP				
		2'b01 0 CKP CKN D0P D0N D1P D1N D2P D2N D3P D3N 1 CKN CKP D0N D0P D1N D1P D2N D2P D3N D3P								
		2'b10 0 D3P D3N D2P D2N CKP CKN D1P D1N D0P D0N 1 D3N D3P D2N D2P CKN CKP D1N D1P D0N D0P								
		2/b11 0 D3P D3N D0P D0N CKP CKN D1P D1N D2P D2N								
PNSW	Input	MIPI/LVDS polarity selection pin (default:0)								
RES[2:0]	mput	Dummy pin (Let it open)								
		The shift direction of device internal shift register is controlled by this as								
		shown below: Normally pull high.								
DIR	Input	DIR Function								
		H S[0,1,2]->>S[2049,2050,2051] (default)								
		L S[2049,2050,2051]->>S[0,1,2]								
		Gate driver scan direction on panel module								
UPDN	Input	If "UPDN"="H", support backward scan								
00.05		If "UPDN"="L", support forward scan(default)								
CS_SD		Dummy pin (Let it open)								
REV	loout	Control whether the data of D0~D3 are inverted or not, Normally pull low. When "REV=1" these data will be inverted. Ex. "00"->"FF", "AA"->"55",and								
RE V	Input	so on.								
		Power mode:								
		PM[1:0] VDDI VCI VSP/VSN VGH/VGL								
		00 External VSP External External								
PM[1:0]	Input	01 External External Internal Internal								
		10 External External PMIC Internal								
		11 External VSP External Internal								
DVCOM WP	Input	Dummy pin (Let it open)								
DVCOM	Input	DVCOM selection:								

		DVCOM	Function					
		Н	Enable D					
_		L		<u>) NCOM (</u>	VCOM input from external pov	wer)		
INV_SEL[0:1]	Input	Dummy pin (Let						
		GIP Level shift s						
			LRSEL[1:0]					
		00			GIP level shift function			
	1	01			GIP level shift on left			
GIP_LRSEL[1:0]	Input	10		side(rig				
		10			GIP level shift on right			
		11		side(lef	GIP level shift on left and			
		11			de (default)			
		Select the lane n	node as liste					
				NE[1:0]	MIPI IF	\mathbf{X}		
			00		1			
LANE[1:0]	Input		00		2			
			10		3			
			11		4 (default)			
<u> </u>		Address for I2C						
ADDR[1:0]	Input	Source driver loc		ion pin.				
	•	(For CAS mode,		•				
		Cascade mode s		,				
		CAS	Funct	ion				
CAS	Input	Н	Casc	ade mode	e (default)			
	•	L	Norm	al mode				
		Refer to applicat	ion Block dia	agram				
		Global reset pin.						
DECV	linnist	RES			,			
RESX	Input	Н	n(default)					
		L The controller is in reset state						
		Standby mode. N						
STBYB	input	STBYB=L, timing controller, source driver will turn off, all outputs are High						
		STBYB=H. norm						
		8-bit input format	t select for L	VDS. No	rmally pull high.			
	I	(only for LVDS)	4 T	F				
LVFMT	Input	LVFM	/11	Function				
				JEIDA fo	rmat(default)			
		L 6_bit/8 bit input a	elect for LV/		. Normally pull high			
				Function				
LVBIT	Input	H		8-bit(def				
				6-bit				
ZIGZAG	Input	Dummy pin (Let	it open)	2 .2 IX				
ZTPYE	Input	Dummy pin (Let						
		Command interfa		<u></u> า				
			SEL	Function				
CMD_SEL	Input	H		I2C				
		L		3-wire				
		Normal Operatio	n/BIST patte		. Normally pull low			
DIOT	1	BIST		Function				
BIST	Input	Н		BIST mo				
		L		Normal of	operation (default)			
		Dithering function	n enable coi					
					HER and HFRC setting.			
DITHER_EN	Input		ER_EN	Function				
_		Н			nternal dithering function			
		L		Disable i	internal dithering function			
		H-FRC selection	Normally p	ull low				
HFRC_EN	Input		C_EN	Function				

		Н	H-FRC enable							
		L	Disable H-FRC							
		Chip select pin								
		0: chip can be accessed								
CSX	Input	1: chip cannot be accessed.								
		If this pin is not used. Please connect it to VDDI.								
			Serial clock input in SPI interface.							
SCL	Input									
	-	If not use, let it open.								
SDA	I/O		out pin in SPI interface operati	on.						
		If not use, let it open.								
SCL_I2C	1	Serial clock input in I								
		If not use, please cor								
SDA_I2C	I/O		out pin in IIC interface operation	on.						
		If not use, please cor								
LEDON	Output	Back-light enable sig								
			I to the External LED driver.							
LEDPWM	Output	PWM type control sig	nal for brightness of the LED	backlight.						
		If not used, please flo	pat this pin.							
PWR EN	Output	Enable power for ext	ernal power IC							
_		Source output.								
		Channel select	Source channel	Disable channel						
		2049	S[2051:0]	- 1						
		1920	S[2051:1092] and S[959:0]	S[1091:960]						
		1800	S[2051:1152] and S[899:0]	S[1151:900]						
		1620	S[2051:1248] and S[815:0]	S[1247:816]						
		1620	S[2051:1248] and S[803:0]	S[1247:804]						
		1536								
			S[2051:1284] and S[767:0]	S[1283:768]						
S[2051:0]	Output	1440	S[2051:1332] and S[719:0]	S[1331:720]						
	•	1296	S[2051:1404] and S[647:0]	S[1403:648]						
		1284	S[2051:1404] and S[635:0]	S[1403:636]						
		1200	S[2051:1452] and S[599:0]	S[1451:600]						
		1152	S[2051:1476] and S[575:0]	S[1475:576]						
		1128	S[2051:1488] and S[563:0]	S[1487:564]						
		1080	S[2051:1512] and S[539:0]	S[1511:540]						
		960	S[2051:1572] and S[479:0]	S[1571:480]						
		810	S[2051:1644] and S[407:0]	S[1643:408]						
		768	S[2051:1668] and S[383:0]	S[1667:384]						
GOUTL[22:1]	Output	These pins are used	for panel gate control signals.	If not used, let it open.						
GOUTR[22:1]	Output		for panel gate control signals.							
SYNC_L[4:0]	I/O		ntrol(for cascade mode)							
SYNC R[4:0]	I/O		ntrol(for cascade mode)							
TSO[9:0]	T		pins for normal operation.							
T_S[4:1]	T		pins for normal operation.							
TEST_EN	T		pins for normal operation.							
CS_GIP	Т		pins for normal operation.							
ERR	Output		pins for normal operation.							
TE	Output	Sync pin								
TP[n]		Dummy pin								
DUM/DUMMY		Dummy pin								
PASS1_R		Deep line								
PASS2_R		Pass line								
PASS1 L		Deselle								
PASS2 L		Pass line								
Power										
VDDR	PI	A power supply for a	nalog circuit. VDDR=1.65V to	3.6V						
VDDD	PO		/ for logic circuits. Connect to							
			logic. VSS=0V. When using t							
VSS	PI									
		to VSSA on the FPC	supply for the LVDS/MIPI	nowor rogulator sizevita						
VDDM	PI			power regulator circuits.						
		VDDM=1.65V to 3.6		atabilining any article						
VDDH	PO	miernal power supply	/ for LVDS/MIPI. Connect to a	stabilizing capacitor.						

VSSM	PI	GND for LVDS/MIPI. VSSM=0V. When using the COG method, connect to VSSA on the FPC to prevent noise.				
VDDI	PI	A power supply for the I/O circuit. VDDI=1.65V to 3.6V				
VCI/VCIP	PI	A power for analog circuit. VCI=2.5V to 3.6V				
VSSA	PI	Analog ground. VSSA=0V				
VSSP	PI	Ground for charge pump				
VSP	PI/PO	Positive power.				
VSN	PI/PO	Negative power.				
VGMP	PO	Positive regulated voltage output(3V to 6.2V).				
VGMN	PO	Negative regulated voltage output(-3V to -6.2V).				
VGH	PO	Output voltage from the step-up circuit. Connect to a stabilizing capacitor between VGH and system ground.				
VGL	PO	Output voltage from the step-up circuit. Connect to a stabilizing capacitor between VGL and system ground.				
VCOM	PO	The power supply of common voltage in DC com driving. Connect to a stabilizing capacitor between VCOM and system ground.				
VPP	I	External High voltage pin is used in OTP program mode. The power is operate at 8.25V. If not used. let them open.				
DC/DC pumping						
C11P, C11N						
C12P, C12N	I/O	Connect to the step-up capacitors according to the DC/DC pumping factor by				
C13P, C13N	1/0	pumping the VSP voltage. If not used let them open.				
C14P, C14N						
C31P, C31N	I/O	Connect to the step-up capacitors according to the DC/DC pumping factor by				
C32P, C32N	".	pumping the VSN voltage. If not used let them open.				
C41P, C41N	I/O	Connect to the step-up capacitors according to the DC/DC pumping factor by				
C42P, C42N	",0	pumping the VGH/VGL voltage. If not used let them open.				

6 Interface

The GH8323-I1 supports SPI / I2C(Command W/R), RGB, LVDS, DSI(Display Serial Interface). The interface mode can be selected by IM[1:0] and CMD_SEL pins setting as show in Table 6.1.

Command IF
I2C
SPI

IM	[1:0]	Display IF
0	0	DSI
0	1	LVDS
1	0	RGB
1	1	Not used

Table 6.1: Interface selection

6.1 SPI Interface

GH8323-I1 use the 3-Wire serial port as communication interface for all the function and command setting. 3-Wire communication can be bi-directional controlled by the "R/W command index".

Under read mode, 3-Wire engine will return the data during "Data phase". The returned data should be latched at the rising edge of SCL by external controller. Data in the "Hi-Z phase" will be ignored by 3-Wire engine during write operation, and should be ignored during read operation also. During read operation, external controller should float SDA pin under "Hi-Z phase" and "Data phase".

6.1.1 SPI interface write mode

Byte	Command + Data								
Byte	Value Description								
1	0xF1	WR command index							
2	0x4C	Data index							
3	0x02	Data number							
4	0xB0	Command address							
5	0x12	Data 1							
6	0x34	Data 2							

Write command + data protocol:

Puto	Command Only						
Byte	Value	Description					
1	0xF1	WR command index					
2	0x4C	Data index					
3	0x00	Data number					
4	0x11	Command address					

GH8323-i1 Datasheet

Figure 6.2: SPI Write Command Only transmitter

6.1.2 SPI interface read mode

Read command + data protocol:

Duto	C	ommand + Data
Byte	Value	Description
1	0xF2	RD command index
2	0x01	Data index
3	0x02	Data number
4	0xB0	Command address
5	Х	Read Data 1
6	Х	Read Data 2

Figure 6.3: SPI Read Command + Data transmitter

6.2 I2C Interface

6.2.1 I2C format

The I2C-bus is for bi-directional, two-line communication between different lcd or modules. The two lines are the Serial Data line (I2C_SDA) and the Serial Clock Line (I2C_SCL). Both lines must be connected to a positive supply via pull-up resistors. Data transfer can be initiated only when the bus is not busy. Each byte of eight bits is followed by an acknowledge bit. The acknowledge bit is a HIGH level signal put on the bus by the transmitter during which time the master generates an extra acknowledgement related clock pulse. A slave receiver which is addressed must generate an acknowledgement after the reception of each byte. Also a master receiver must generate an acknowledgement after the reception of each byte that has been clocked out of the slave transmitter.

I2C-Bus Protocol:

Before any data is transmitted on the I2C-bus, the device which should respond is addressed first. There are four slave address can be selected by MCU. The slave addressing is always carried out with the first byte transmitted after the START procedure.

Definitions:

- Transmitter: The device which sends the data to the bus.
- Receiver: The device which receives the data from the bus.

- Master: The device which initiates a transfer, generates clock signals and terminates a transfer.

- Slave: The device addressed by a master.

- Multi-master: More than one master can attempt to control the bus at the same time without corrupting the message.

- Arbitration: Procedure to ensure that, if more than one master simultaneously tries to control the bus, only one is allowed to do so and the message is not corrupted.

- Synchronization: Procedure to synchronize the clock signals of two or more devices.

6.2.2 Command Write Sequence of I2C Interface

GH8323-I1 supports register write sequence via I2C-bus transfer. The register writing support single register write mode and multi-register write mode. The detail transference sequences are illustrated and described as below.

- 1) Data transfers for register writing follow the format is shown in below.
- 2) After the START condition (S), a slave address is sent. R/W bit is setting to "0" for WRITE.
- 3) The slave issues an ACK to master.
- 4) 8 bits command address transfer first then transfer the register data parameter.
- 5) A data transfer is always terminated by a STOP condition.
- 6) GH8323-I1 DA[6:0] = 100_1000(0x48, ADDR pin = "0") or DA[6:0] = 100_1001(0x49, ADDR pin="1")

Figure 6.4: I2C Write Command + Data transmitter

Figure 6.5: I2C Write Command Only transmitter

6.2.3 Command Read Sequence of I2C Interface

GH8323-I1 supports register read sequence via I2C-bus transfer. Register data reading transfers follow the format and is shown in below.

Figure 6.6:I2C Read Command + Data transmitter

6.3 RGB interface

6.3.1 General timing diagram

The image information can be incorrect on the display, when timings are out of the range on the interface (Out of the range timings cannot cause any damage on the display module or it cannot cause any damage on the host side). If it is returned from out of the range to in range timings, then the correct display image must be displayed automatically (by the display module) on the next frame (vertical sync.).

Figure 6.8: RGB (800RGB x 480) timing diagram

6.3.2 RGB Data format

The GH8323-I1 supports 16-bit, 18-bit or 24-bit parallel RGB interface which includes: HS, VS, DE, CK, DB[23:0]. The interface is active after Power On sequence. Pixel clock (CK) is

running all the time without stopping and it is used to entering HS, VS, DE and D[23:0] lines states when there is a rising edge of the CK. The CK cannot be used as continue internal clock for other functions of the display module e.g. Sleep In– mode etc. Vertical synchronization (VS) is start signal to receive a "new frame" of the display. This is negative ("-", "0", low) active by rising edge of the CK-line. Horizontal synchronization (HS) is start signal to receive a "new line" of the frame. This is negative ("-", "0", low) active by rising edge of the CK-line. Data enable (DE) is used to receive RGB information that should be transferred on the display. This is positive ("+", "1", high) active by rising edge of the CK-line.

The pixel clock cycle is described in the following figure.

Note: CK is an unsynchronized signal (It can be stopped).

Figure 6.9: CK cycle

Data format	DB 23	DB 22	DB 21	DB 20	DB 19	DB 18	DB 17	DB 16	DB 15	DB 14	DB 13	DB 12	DB 11	DB 10	DB 09	DB 08			DB 05					
24bit (3Ah=0x70)	R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	B7	B6	B5	B4	В3	B2	B1	в0
18bit (3Ah=0x60)	R5	R4	R3	R2	R1	R0			G5	G4	G3	G2	G1	G0			B5	B4	В3	B2	B1	B0		
16bit (3Ah=0x50)	R4	R3	R2	R1	R0				G5	G4	G3	G2	G1	G0			B4	B3	B2	B1	В0			

Table 6.2: RGB Interface data format

6.3.3 RGB interface mode select

GH8323-I1 support RGB interface mode 1(SYNC + DE mode) and mode 2(SYNC only mode), it is select by USER command.

In RGB mode 1(SYNC + DE mode), writing data to line buffer is done by CK and Video Data Bus (D[23] to D[0]), when DE is high state. The external clocks (CK, VS and HS) are used for internal displaying clock. So, controller must always transfer CK, VS and HS signal to GH8323-I1.

In RGB mode 2(SYNC only mode), back porch of VS VBP is defined by VBP[7:0]. And back porch of HS HBP is defined by HBP[7:0]. Front porch of VS VFP is defined by VFP[7:0]. And front porch of HS HFP is defined by HFP[7:0].

RGB mode	VS	HS	DE	СК	D[23] ~ D[0]	Register VFP[7:0] ,VBP[7:0], HFP[7:0], HBP[7:0]
Mode 1	Used	Used	Used	Used	Used	Not used
Mode 2	Used	Used	Not used	Used	Used	Used

6.4 LVDS interface

6.4.1 LVDS Data format

Figure 6.10: 6-bit LVDS input (IM[1:0]=01, LANE[1:0]=10, LVFMT=Don't care)

Figure 6.12: 8-bit LVDS input (IM[1:0]=01, LANE[1:0]=11, LVFMT=0(VESA))

6.4.2 LVDS Input Timing Table

For 1366RGBx768

Parameter		Symbol	Value			11
			Min.	Тур.	Max.	Unit
DCLK frequency @Frame rate=60Hz (LVDS)		FDCLK	69.7	75	80.9	MHz
HSYNC period time		Тн	1468	1550	1596	DCLK
Horizontal display area		Тнр	1366			DCLK
	Min.	Тнрw	2			
HSYNC pulse width	Тур.					
	Max.		40			
HSYNC back porch(with pulse width)		THFP	88	88	88	DCLK
HSYNC front porch		THFP	14	96	142	DCLK
VSYNC period time		Τv	792	806	840	Н
Vertical display area		Tvd	768			Н
VSYNC pulse width	Min.		2			Н
	Тур.	TVPW				
	Max.					
VSYNC back porch(with pulse width)		Тувр	23	23	23	Н
VSYNC front porch		TVFP	1	15	49	Н

For 1280RGBx800

Parameter		Symbol	Value			llait
			Min.	Тур.	Max.	Unit
DCLK frequency @Frame rate=60Hz (LVDS)		Fdclk	66.3	72.4	78.9	MHz
HSYNC period time		Тн	1380	1440	1500	DCLK
Horizontal display area		Тнр		DCLK		
HSYNC pulse width	Min.	Тнрw				
	Тур.					
	Max.			40		
HSYNC back porch(with pulse width)		Thep	88	88	88	DCLK
HSYNC front porch		Thep	14	72	132	DCLK
VSYNC period time		Τv	824	838	872	Н
Vertical display area		Tvd		800		Н
VSYNC pulse width	Min.			2		Н
	Тур.	Tvpw		-		
	Max.			20		
VSYNC back porch(with pulse width)		Тувр	23	23	23	Н
VSYNC front porch		TVFP	1	15	49	Н

6.5 DSI system interface

The Display Serial Interface (DSI) specifies the interface between a host processor and a peripheral. DSI builds on existing MIPI Alliance specifications by adopting pixel formats and command set specified in DPI-2, DBI-2 and DCS standards.

Figure 7.13 DSI transmitter and receiver interface shows a simplified DSI interface. DSI sends display data or commands to the peripheral, and can read back status or pixel information from the peripheral. The main difference is that DSI serializes all pixel data, commands, and events that, in traditional or legacy interfaces, are normally conveyed to and from the peripheral on a parallel data bus with additional control signals.

Figure 6.13 DSI transmitter and receiver interface

A conceptual vide of DSI organizes the interface into several functional layers. A description of the layers follows and is also shown in Figure 6.14.
Peripheral

Application Processor

Lane N -- High Speed Unidirectional Data

Figure 6.14: DSI Layer

PHY Layer: The PHY Layer specifies transmission medium (electrical conductors), the input/output circuitry and the clocking mechanism that captures "ones" and "zeroes" from the serial bit stream. Bit-level and byte-level synchronization mechanisms are included as part of the PHY.

Lane Management Layer: DSI is Lane-scalable for increased performance. The number of data signals may be 1, 2, 3, or 4 depending on the bandwidth requirements of the application. The transmitter side of the interface distributes the outgoing data stream to one or more Lanes ("distributor" function). On the receiving end, the interface collects bytes from the Lanes and merges them together into a recombined data stream that restores the original stream sequence ("merger" function).

Protocol Layer: At the lowest level, DSI protocol specifies the sequence and value of bits and bytes traversing the interface. It specifies how bytes are organized into defined groups called packets. The protocol defines required headers for each packet, and how header information is generated and interpreted. The transmitting side of the interface appends header and error-checking information to data being transmitted. On the receiving side, the header is stripped off and interpreted by corresponding logic in the receiver. Error-checking information may be used to test the integrity of incoming data. DSI protocol also documents how packets may be tagged for interleaving multiple command or data streams to separate destinations using a single DSI.

Application Layer: This layer describes higher-level encoding and interpretation of data contained in the data stream. Depending on the display subsystem architecture, it may consist of pixels having a prescribed format, or of commands that are interpreted by the display controller inside a display module. The DSI specification describes the mapping of pixel values, commands and command parameters to bytes in the packet assembly.

6.5.1 Command mode, Video mode and Virtual Channel

DSI-compliant peripheral support either of two basic modes of operation: Command Mode

and Video Mode. Which mode is used depends on the architecture and capabilities of the peripheral.

Typically, a peripheral is capable of Command Mode operation or Video Mode operation. Some Video Mode display modules also include a simplified form of Command Mode operation in which the display module may refresh its screen from a reduced-size, or partial, frame buffer, and the interface (DSI) to the host processor may be shut down to reduce power consumption.

Command Mode

Command Mode refers to operation in which transactions primarily take the form of sending commands and data to a peripheral, such as a display module, that incorporates a display controller. The display controller may include local registers and a frame buffer. Systems using Command Mode write to, and read from, the registers and frame buffer memory. The host processor indirectly controls activity at the peripheral by sending commands, parameters and data to the display controller. The host processor can also read display module status information or the contents of the frame memory. Command Mode operation requires a bidirectional interface.

Video Mode

Video Mode refers to operation in which transfers from the host processor to the peripheral take the form of a real-time pixel stream. In normal operation, the display module relies on the host processor to provide image data at sufficient bandwidth to avoid flicker or other visible artifacts in the displayed image. Video information should only be transmitted using High Speed Mode.

Some Video Mode architectures may include a simple timing controller and partial frame buffer, used to maintain a partial-screen or lower-resolution image in standby or Low Power Mode. This permits the interface to be shut down to reduce power consumption. To reduce complexity and cost, systems that only operate in Video Mode may use a unidirectional data path.

Virtual Channel Capability

While this specification only addresses the connection of a host processor to a single peripheral, DSI incorporates a virtual channel capability for communication between a host processor and multiple, physical display modules. Since interface bandwidth is shared between peripherals, there are constraints that limit the physical extent and performance of multiple-peripheral systems. The DSI protocol permits up to four virtual channels, enabling traffic for multiple peripherals to share a common DSI Link. The DSI specification makes no requirements on the specific value assigned to each virtual channel used to designate interlaced fields, For clarity, the first interlaced video field may be assigned as DI[7:6] = 2'b00 and the second interlaced video field may be assigned DI[7:6] = 2'b01.

Note1: GH8323-I1 support both command mode and video mode.

6.5.2 Power-up Sequence Example

Figure 6.15: Peripheral Power-Up Sequencing Example

6.5.3 DSI Format

Information is transferred between host processor and peripheral using one or more serial data signals and accompanying serial clock. The action of sending high-speed serial data across the bus is called a HS transmission or burst. Between transmissions, the differential data signal or Lane goes to a low-power state (LPS). Interfaces should be in LPS when they are not actively transmitting or receiving high-speed data. Figure 7.4 shows the basic structure of a HS transmission. N is the total number of bytes sent in the transmission

Figure 6.16: Basic HS Transmission Structure

Multi Lane Distribution and Merging

DSI is a Lane-scalable interface. Applications requiring more bandwidth than that provided by one Data Lane may expand the data path to two, three, or four Lanes wide and obtain approximately linear increases in peak bus bandwidth.

Multi-Lane implementations shall use a single common clock signal, shared by all Data Lanes. Conceptually, between the PHY and higher functional blocks is a layer that enables multi-Lane operation.

Since a HS transmission is composed of an arbitrary number of bytes that may not be an integer multiple of the number of Lanes, some Lanes may run out of data before others. Therefore, the Lane Management layer, as it buffers up the final set of less-than-N bytes, deasserts its "valid data" signal into all Lanes for which there is no further data.

Although all Lanes start simultaneously with parallel SoTs, each Lane operates independently and may complete the HS transmission before the other Lanes, sending an EoT one cycle (byte) earlier.

The N PHYs on the receiving end of the Link collect bytes in parallel and feed them into the Lane Management layer. The Lane Management layer reconstructs the original sequence of bytes in the transmission. Figure 6.17 & Figure 6.18 illustrate a variety of ways a HS transmission can terminate for different number of Lanes and packet lengths.

南京观海微电子有假公司 GoHi Microelectronics Co., Ltd.

Number of Bytes, N transmitted is an integer multiple of the number of lanes:

Number of Bytes, N transmitted is an integer multiple of the number of lanes:

Figure 6.18: Three Lane HS Transmission Example

6.5.4 DSI Protocol

On the transmitter side of a DSI Link, parallel data, signal events, and commands are converted in the Protocol layer to packets, following the packet organization documented in this section. The Protocol layer appends packet-protocol information and headers, and then sends complete bytes through the Lane Management layer to the PHY.

6.5.5 Multiple Packets per Transmission

In its simplest form, a transmission may contain one packet. If many packets are to be transmitted, the overhead of frequent switching between LPS and High-Speed Mode will severely limit bandwidth if packets are sent separately, e.g. one packet per transmission.

The DSI protocol permits multiple packets to be concatenated, which substantially boosts effective bandwidth. This is useful for events such as peripheral initialization, where many

registers may be loaded with separate write commands at system startup.

There are two modes of data transmission, HS and LP transmission modes, at the PHY layer. Before a HS transmission can be started, the transmitter PHY issues a SoT sequence to the receiver. After that, data or command packets can be transmitted in HS mode. Multiple packets may exist within a single HS transmission and the end of transmission is always signaled at the PHY layer using a dedicated EoT sequence. In order to enhance the overall robustness of the system, DSI defines a dedicated EoT packet (EoTp) at the protocol layer for signaling the end of HS transmission. For backwards compatibility with earlier DSI systems, the capability of generating and interpreting this EoTp can be enabled or disabled. The method of enabling or disabling this capability is out of scope for this document.

The top diagram in Figure 7.19 illustrates a case where multiple packets are being sent separately with EoTp support disabled. In HS mode, time gaps between packets shall result in separate HS transmissions for each packet, with a SoT, LPS, and EoT issued by the PHY layer between packets. This constraint does not apply to LP transmissions. The bottom diagram in Figure 7.19 demonstrates a case where multiple packets are concatenated within a single HS transmission.

Figure 6.19: HS Transmission Examples with EoTp disabled

Figure 6.20 depicts HS transmission cases where EoTp generation is enabled. In the figure, EoT short packets are highlighted in red. The top diagram illustrates a case where a host is intending to send a short packet followed by a long packet using two separate transmissions. In this case, an additional EoT short packet is generated before each transmission ends. This mechanism provides a more robustenvironment, at the expense of increased overhead (four extra bytes per transmission) compared to cases where EoTp generation is disabled, i.e. the system only relies on the PHY layer EoT sequence for signaling the end of HS transmission. The overhead imposed by enabling EoTp can be minimized by sending multiple long and short packets within a single transmission as illustrated by the bottom diagram in Figure 6.8.

Figure 6.20: HS Transmission Examples with EoTp enabled

6.5.6 Endian Policy

All packet data traverses the interface as bytes. Sequentially, a transmitter shall send data LSB first, MSB last. For packets with multi-byte fields, the least significant byte shall be transmitted first unless otherwise specified. Figure 6.21 shows a complete Long packet data transmission. Note, the figure shows the byte values in standard positional notation, i.e. MSB on the left and LSB on the right, while the bits are shown in chronological order with the LSB on the left, the MSB on the right and time increasing left to right.

DI	WC (LS Byte)	WC (MS Byte)	ECC	Data	CRC (LS Byte)	CRC (MS Byte)
0x29	0x01	0x00	0x06	0x01	0x0E	0x1E
1001010	0 1 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 1 1 0 0 0 0 0	10000000	0 1 1 1 0 0 0 0	0 1 1 1 1 0 0 0
L	ML		L N	íL N	Ĺ	Μ
S	SS		S S	s s	S	S
В	BB		B E	B B	В	В
Time						

Figure 6.21: Endian Example (Long Packet)

6.5.7 Packet Structure

The first byte of the packet, the Data Identifier (DI), includes information specifying the type of the packet. Packet sizes fall into two categories:

•Long packets specify the payload length using a two-byte Word Count field. Payloads may be from 0 to 216- 1 bytes long. Therefore, a Long packet may be up to 65,541 bytes in length. Long packets permit transmission of large blocks of pixel or other data.

•Short packets are four bytes in length including the ECC. Short packets are used for most Command Mode commands and associated parameters. Other Short packets convey events like H Sync and V Sync edges. Because they are Short packets they can convey accurate timing information to logic at the peripheral.

The Set Maximum Return Packet Size command allows the host processor to limit the size of response packets coming from a peripheral.

6.5.8 Long Packet

Figure 6.22 shows the structure of the Long packet. A Long packet shall consist of three elements: a 32-bit Packet Header (PH), an application-specific Data Payload with a variable

number of bytes, and a 16-bit Packet Footer (PF). The Packet Header is further composed of three elements: an 8-bit Data Identifier, a 16-bit Word Count, and 8-bit ECC. The Packet Footer has one element, a 16-bit checksum. Long packets can be from 6 to 65,541 bytes in length

南京观海微电子有很公司 GoHi Microelectronics Co., Ltd.

Figure 6.22: Long Packet Structure

The Data Identifier defines the Virtual Channel for the data and the Data Type for the application specific payload data.

The Word Count defines the number of bytes in the Data Payload between the end of the Packet Header and the start of the Packet Footer. Neither the Packet Header nor the Packet Footer shall be included in the Word Count.

The Error Correction Code (ECC) byte allows single-bit errors to be corrected and 2-bit errors to be detected in the Packet Header. This includes both the Data Identifier and Word Count fields.

After the end of the Packet Header, the receiver reads the next Word Count * bytes of the Data Payload. Within the Data Payload block, there are no limitations on the value of a data word, i.e. no embedded codes are used.

Once the receiver has read the Data Payload it reads the Checksum in the Packet Footer. The host processor shall always calculate and transmit a Checksum in the Packet Footer. Peripherals are not required to calculate a Checksum. Also note the special case of zero-byte Data Payload: if the payload has length 0, then the Checksum calculation results in (0xFFFF). If the Checksum is not calculated, the Packet Footer shall consist of two bytes of all zeros (0x0000). In the generic case, the length of the Data Payload shall be a multiple of bytes.

Each byte shall be transmitted least significant bit first. Payload data may be transmitted in any byte order restricted only by data format requirements. Multi-byte elements such as Word Count and Checksum shall be transmitted least significant byte first.

6.5.9 Short Packet

Figure 6.23 shows the structure of the Short packet. A Short packet shall contain an 8-bit Data ID followed by two command or data bytes and an 8-bit ECC; a Packet Footer shall not be present. Short packets shall be four bytes in length. The Error Correction Code (ECC) byte allows single-bit errors to be corrected and 2-bit errors to be detected in the Short packet.

6.5.10 Common Packet Elements

Long and Short packets have several common elements that are described in this section.

6.5.11 Data Identifier Byte

The first byte of any packet is the DI (Data Identifier) byte. Figure 6.12 shows the composition of the Data Identifier (DI) byte. DI[7:6]: These two bits identify the data as directed to one of four virtual channels. DI[5:0]: These six bits specify the Data Type.

Figure 6.24: Data Identifier Byte

6.5.12 Virtual Channel Identifier – VC field, DI[7:6]

A processor may service up to four peripherals with tagged commands or blocks of data, using the Virtual Channel ID field of the header for packets targeted at different peripherals. The Virtual Channel ID enables one serial stream to service two or more virtual peripherals by multiplexing packets onto a common transmission channel.

6.5.13 Data Type Field DT[5:0]

The Data Type field specifies if the packet is a Long or Short packet type and the packet format. The Data Type field, along with the Word Count field for Long packets, informs the receiver of how many bytes to expect in the remainder of the packet. This is necessary because there are no special packet start / end sync codes to indicate the beginning and end of a packet. This permits packets to convey arbitrary data, but it also requires the packet header to explicitly specify the size of the packet. When the receiving logic has counted down to the end of a packet, it shall assume the next data is either the header of a new packet or the EoT (End of Transmission) sequence.

6.5.14 ECC

The Error Correction Code allows single-bit errors to be corrected and 2-bit errors to be detected in the Packet Header. The host processor shall always calculate and transmit an ECC byte. Peripherals shall support ECC in both forward- and reverse-direction communications.

6.5.15 DSI packet

The DSI protocol permits multiple packets which is useful for events such as peripheral initialization, where many registers may be loaded separate write commands at system startup. Below figure illustrates multiple HS Transmission packets.

LPS: Low power state

SOT: Start of Transmission

SP: Short Packet

LP: Long Packet

EOT: End of Transmission

6.5.16 Processor-sourced Packets

The set of transaction types sent from the host processor to a peripheral, such as a display module, are shown in Table 6.4.

Data Type (Hex)	Data Type (Binary)	Description	Packet Size
0x01	00 0001	Sync Event, V Sync Start	Short
0x11	01 0001	Sync Event, V Sync End	Short
0x21	10 0001	Sync Event, H Sync Start	Short
0x31	11 0001	Sync Event, H Sync End	Short
0x08	00 1000	End of Transmission packet (EoTp)	Short
0x02	00 0010	Color Mode (CM) Off Command	Short
0x12	01 0010	Color Mode (CM) On Command	Short
0x22	10 0010	Shut Down Peripheral Command	Short
0x32	11 0010	Turn On Peripheral Command	Short
0x03	00 0011	Generic Short WRITE, no parameters	Short

T	r		
0x13	01 0011	Generic Short WRITE, 1 parameter	Short
0x23	10 0011	Generic Short WRITE, 2 parameters	Short
0x04	00 0100	Generic READ, no parameters	Short
0x14	01 0100	Generic READ, 1 parameter	Short
0x24	10 0100	Generic READ, 2 parameters	Short
0x05	00 0101	DCS Short WRITE, no parameters	Short
0x15	01 0101	DCS Short WRITE, 1 parameter	Short
0x06	00 0110	DCS READ, no parameters	Short
0x37	11 0111	Set Maximum Return Packet Size	Short
0x09	00 1001	Null Packet, no data	Long
0x19	01 1001	Blanking Packet, no data	Long
0x29	10 1001	Generic Long Write	Long
0x39	11 1001	DCS Long Write/write_LUT Command Packet	Long
0x0E	00 1110	Packed Pixel Stream, 16-bit RGB, 5-6-5 Format	Long
0x1E	01 1110	Packed Pixel Stream, 18-bit RGB, 6-6-6 Format	Long
0x2E	10 1110	Loosely Packed Pixel Stream, 18-bit RGB, 6-6-6 Format	Long
0x3E	11 1110	Packed Pixel Stream, 24-bit RGB, 8-8-8 Format	Long
0xX0 and	xxx 0000		
0xXF	xx 0000	DO NOT USE	, i i i i i i i i i i i i i i i i i i i
unspecified	xx 1111	All unspecified codes are reserved	

6.5.17 Packed Pixel Stream, 16-bit Format, Long Packet

Packed Pixel Stream 16-Bit Format shown in Figure 6.25 is a Long packet used to transmit image data formatted as 16-bit pixels to a Video Mode display module. The packet consists of the DI byte, a two-byte WC, an ECC byte, a payload of length WC bytes and a two-byte checksum. Pixel format is five bits red, six bits green, five bits blue, in that order. Within a color component, the LSB is sent first, the MSB last. The total line width (displayed plus non-displayed pixels) should be a multiple of two bytes.

6.5.18 Packed Pixel Stream, 18-bit Format, Long Packet

Packed Pixel Stream 18-Bit Format (Packed) shown in Figure 6.26 is a Long packet. It is used to transmit RGB image data formatted as pixels to a Video Mode display module that displays 18-bit pixels The packet consists of the DI byte, a two-byte WC, an ECC byte, a payload of length WC bytes and a two-byte Checksum. Pixel formatis red (6 bits), green (6 bits) and blue (6 bits), in that order. Within a color component, the LSB is sent first, the MSB last.

Note that pixel boundaries only align with byte boundaries every four pixels (nine bytes). Preferably, display modules employing this format have a horizontal extent (width in pixels) evenly

divisible by four, so no partial bytes remain at the end of the display line data. If the active (displayed) horizontal width is not a multiple of four pixels, the transmitter shall send additional fill pixels at the end of the display line to make the transmitted width a multiple of four pixels. Peripheral will not display the fill pixels when refreshing the display device.

南京观海微电子有很公司 GoHi Microelectronics Co., Ltd.

Figure 6.26: 18-bit per Pixel (Packed) – RGB Color Format, Long Packet

6.5.19 Pixel Stream, 18-bit Loosely Format, Long Packet

In the 18-bit Pixel Loosely Packed format, each R, G, or B color component is six bits, but is shifted to the upper bits of the byte, such that the valid pixel bits occupy bits [7:2] of each byte as shown in Figure 6.27. Bits [1:0] of each payload byte representing active pixels are ignored. As a result, each pixel requires three bytes as it is transmitted across the Link. This requires more bandwidth than the "packed" format, but requires less shifting and multiplexing logic in the packing and unpacking functions on each end of the Link. With this format, pixel boundaries align with byte boundaries every three bytes. The total line width (displayed plus non-displayed pixels) should be a multiple of three bytes.

Figure 6.27: 18-bit per Pixel (Loosely Packed) – RGB Color Format, Long Packet

6.5.20 Packed Pixel Stream, 24-bit Format, Long Packet

Packed Pixel Stream 24-Bit Format shown in Figure 6.28 is a Long packet. It is used to transmit image data formatted as 24-bit pixels to a Video Mode display module. The packet consists of the DI byte, a two-byte WC, an ECC byte, a payload of length WC bytes and a two-byte Checksum. The pixel format is red (8 bits), green (8 bits) and blue (8 bits), in that order. Each color component occupies one byte in the pixel stream; no components are split across byte boundaries. Within a color component, the LSB is sent first, the MSB last. With this format, pixel boundaries align with byte boundaries every three bytes. The total line width (displayed plus non-displayed pixels) should be a multiple of three bytes.

Figure 6.28: 24-bit per Pixel – RGB Color Format, Long Packet

6.5.21 Peripheral to Processor Transmission

GH8323-I1 has bidirectional capability for returning READ data, acknowledge, or error information to the host processor. BTA shall take place after every peripheral-to-processor transaction. This returns bus control to the host processor following the completion of the LP transmission from the peripheral.

Peripheral-to-processor transactions are of four basic types:

•Tearing Effect (TE) is a Trigger message sent to convey display timing information to the host processor. Trigger messages are single byte packets sent by a peripheral's PHY layer in response to a signal from the DSI protocol layer.

•Acknowledge is a Trigger Message sent when the current transmission, as well as all preceding transmissions since the last peripheral to host communication, i.e. either triggers or packets, is received by the peripheral with no errors.

•Acknowledge and Error Report is a Short packet sent if any errors were detected in preceding transmissions from the host processor. Once reported, accumulated errors in the error register are cleared.

•**Response to Read Request** may be a Short or Long packet that returns data requested by the preceding READ command from the processor.

6.5.22 Appropriate Responses to Commands and ACK Requests

In general, if the host processor completes a transmission to the peripheral with BTA asserted, the peripheral shall respond with one or more appropriate packet(s), and then return bus ownership to the host processor. If BTA is not asserted following a transmission from the host processor, the peripheral shall not communicate an Acknowledge or error information back to the host processor.

Interpretation of processor-to-peripheral transactions with BTA asserted, and the expected responses, are as follows:

•Following a non-Read command, the peripheral shall respond with Acknowledge if no errors were detected and stored since the last peripheral to host communication, i.e. either triggers or packets.

•Following a Read request, the peripheral shall send the requested READ data if no errors were detected and stored since the last peripheral to host communication, i.e. either triggers or packets.

•Following a Read request if only a single-bit ECC error was detected and corrected, the peripheral shall send the requested READ data in a Long or Short packet, followed by a 4-byte Acknowledge and Error Report packet in the same LP transmission. The Error Report shall have the ECC Error – Single Bit flag set, as well as any error bits from any preceding transmissions stored since the last peripheral to host communication.

•Following a non-Read command if only a single-bit ECC error was detected and corrected, the peripheral shall proceed to execute the command, and shall respond to BTA by sending a 4byte Acknowledge and Error Report packet. The Error Report shall have the ECC Error – Single Bit flag set, as well as any error bits from any preceding transmissions stored since the last peripheral to host communication.

•Following a Read request, if multi-bit ECC errors were detected and not corrected, the peripheral shall send a 4-byte Acknowledge and Error Report packet without sending Read data. The Error Report shall have the ECC Error – Multi-Bit flag set, as well as any error bits from any preceding transmissions stored since the last peripheral to host communication.

•Following a non-Read command, if multi-bit ECC errors were detected and not corrected, the peripheral shall not execute the command, and shall send a 4-byte Acknowledge and Error Report packet. The Error Report shall have the ECC Error – Multi-Bit flag set, as well as any error bits from any preceding transmissions stored since the last peripheral to host communication.

•Following any command, if SoT Error, SoT Sync Error or DSI VC ID Invalid or DSI protocol violation was detected, or the DSI command was not recognized, the peripheral shall send a 4-byte Acknowledge and Error Report response, with the appropriate error flags set, as well as any error bits from any preceding transmissions stored since the last peripheral to host communication, in the two-byte error field. Only the Acknowledge and Error Report packet shall be transmitted; no read or write accesses shall take place on the peripheral in response.

•Following any command, if EoT Sync Error or LP Transmit Sync Error is detected, or a checksum error is detected in the payload, the peripheral shall send a 4-byte Acknowledge and Error Report packet with the appropriate error flags set, as well as any error bits from any preceding transmissions stored since the last peripheral to host communication. For a read command, only the Acknowledge and Error Report packet shall be transmitted; no read data shall be sent by the peripheral in response.

Once reported to the host processor, all errors documented in this section are cleared from the Error Register.

6.5.23 Peripheral-to-Processor Packet Description

Table 6.5 presents the complete set of peripheral-to-processor Data Types.

	Data Type (Binary)	Description	Packet Size
0x02	00 0010a	Acknowledge and Error Report	Short
0x08	00 1000	End of Transmission packet	Short
0x1C	01 1100	DCS Long READ Response	Long

Table 6.5: Data Types for Peripheral-sourced Packets

6.5.24 Format of Acknowledge and Error Report and Read Response Data Type

Acknowledge is sent using a Trigger message.

Byte 0: 00100001 (shown here in first bit [left] to last bit [right] sequence)

Response to Read Request returns data requested by the preceding READ command from the processor. These may be short or Long packets. The format for short READ packet responses is:

•Byte 0: Data Identifier (Virtual Channel ID + Data Type)

•Bytes 1, 2: READ data, may be one or two bytes. For single byte parameters, the parameter shall be returned in Byte 1 and Byte 2 shall be set to 0x00.

•ECC byte covering the header

Acknowledge and Error Report confirms that the preceding command or data sent from the host processor to a peripheral was received, and indicates what types of error were detected on the transmission and any preceding transmissions. Note that if errors accumulate from multiple preceding transmissions, it may be difficult or impossible to identify which transmission contained the error. This message is a Short packet of four bytes, taking the form:

•Byte 0: Data Identifier (Virtual Channel ID + Acknowledge Data Type)

•Byte 1: Error Report bits 0-7

•Byte 2: Error Report bits 8-15

•ECC byte covering the header

An error report is a Short packet comprised of two bytes following the DI byte, with an ECC byte following the Error Report bytes. By convention, detection and reporting of each error type is signified by setting the corresponding bit to "1". Table 6.6 shows the bit assignment for all error reporting.

Bit	Description
0	SoT Error
1	SoT Sync Error
2	EoT Sync Error
3	Escape Mode Entry Command Error
4	Low-Power Transmit Sync Error
5	Peripheral Timeout Error
6	False Control Error
7	Contention Detected
8	ECC Error, Single-bit (detected and corrected)
9	ECC Error, Multi-bit (detected, not corrected)

GH8323-i1 Datasheet

10	Checksum Error (Long packet only)
11	DSI Data Type Not Recognized
12	DSI VC ID Invalid
13	Invalid Transmission Length
14	Reserved
15	DSI Protocol Violation

Table 6.6: Error Report Bit Definitions

The first eight bits, bit 0 through bit 7, are related to the physical layer errors. Bits 8 and 9 are related to single-bit and multi-bit ECC errors. The remaining bits indicate DSI protocol-specific errors.

6.5.25 Video Mode Interface Timing

Video Mode peripherals require pixel data delivered in real time. This section specifies the format and timing of DSI traffic for this type of display module.

6.5.26 Transmission Packet Sequences

DSI supports several formats, or packet sequences, for Video Mode data transmission. In the following sections, Burst Mode refers to time-compression of the RGB pixel (active video) portion of the transmission. In addition, these terms are used throughout the following sections:

•Non-Burst Mode with Sync Pulses – enables the peripheral to accurately reconstruct original video timing, including sync pulse widths.

•Non-Burst Mode with Sync Events – similar to above, but accurate reconstruction of sync pulse widths is not required, so a single Sync Event is substituted.

•Burst mode – RGB pixel packets are time-compressed, leaving more time during a scan line for LP mode (saving power) or for multiplexing other transmissions onto the DSI link.

In the following figures the Blanking or Low-Power Interval (BLLP) is defined as a period during which video packets such as pixel-stream and sync event packets are not actively transmitted to the peripheral.

To enable PHY synchronization the host processor should periodically end HS transmission and drive the Data Lanes to the LP state. This transition should take place at least once per frame; shown as LPM in the figures in this section. The host processor should return to LP state once per scanline during the horizontal blanking time.

During the BLLP the DSI Link may do any of the following:

•Remain in Idle Mode with the host processor in LP-11 state and the peripheral in LP-RX

•Transmit one or more non-video packets from the host processor to the peripheral using Escape Mode

•Transmit one or more non-video packets from the host processor to the peripheral using HS Mode

•If the previous processor-to-peripheral transmission ended with BTA, transmit one or more packets from the peripheral to the host processor using Escape Mode

•Transmit one or more packets from the host processor to a different peripheral using a different Virtual Channel ID

The sequence of packets within the BLLP or RGB portion of a HS transmission is arbitrary. The host processor may compose any sequence of packets, including iterations, within the limits of the packet format definitions. For all timing cases, the first line of a frame shall start with VSS; all other lines shall start with VSE or HSS. Note that the position of synchronization packets, such ● 南京观海微电子有限公司 GoHi Microelectronics Co., Ltd.

as VSS and HSS, in time is of utmost importance since this has a direct impact on the visual performance of the display panel.

Normally, RGB pixel data is sent with one full scan line of pixels in a single packet.

Transmission packet components used in the figures in this section are defined in Figure 6.29 Video Mode Interface Timing Legend unless otherwise specified.

Figure 6.29 Video Mode Interface Timing Legend

If a peripheral timing specification for HBP or HFP minimum period is zero, the corresponding Blanking Packet may be omitted. If the HBP or HFP maximum period is zero, the corresponding blanking packet shall be omitted.

6.5.27 Non-Burst sync pulse mode

With this format, the goal is to accurately convey DPI-type timing over the DSI serial Link. This includes matching DPI pixel-transmission rates, and widths of timing events like sync pulses. Accordingly, synchronization periods are defined using packets transmitting both start and end of sync pulses. An example of this mode is shown in Figure 6.30.

Figure 6.30: Video Mode Interface Timing: Non-Burst Transmission with Sync Start and End

Normally, periods shown as HSA (Horizontal Sync Active), HBP (Horizontal Back Porch) and HFP (Horizontal Front Porch) are filled by Blanking Packets, with lengths (including packet overhead) calculated to match the period specified by the peripheral's data sheet. Alternatively, if there is sufficient time to transition from HS to LP mode and back again, a timed interval in LP mode may substitute for a Blanking Packet, thus saving power. During HSA, HBP and HFP periods, the bus should stay in the LP-11 state.

6.5.28 Non-Burst sync event mode

This mode is a simplification of the "Non-Burst Mode with Sync Pulses" format. Only the start of each synchronization pulse is transmitted. The peripheral may regenerate sync pulses as needed from each Sync Event packet received. An example of this mode is shown in Figure 6.31.

Figure 6.31: Video Mode Interface Timing: Non-burst Transmission with Sync Events

As with the previous Non-Burst Mode, if there is sufficient time to transition from HS to LP mode and back again, a timed interval in LP mode may substitute for a Blanking Packet, thus saving power.

6.5.29 Burst mode

In this mode, blocks of pixel data can be transferred in a shorter time using a time-compressed burst format. This is a good strategy to reduce overall DSI power consumption, as well as enabling larger blocks of time for other data transmissions over the Link in either direction.

Following HS pixel data transmission, the bus may stay in HS Mode for sending blanking packets or go to Low Power Mode, during which it may remain idle, i.e. the host processor remains in LP-11 state, or LP transmission may take place in either direction. If the peripheral takes control of the bus for sending data to the host processor, its transmission time shall be limited to ensure data underflow does not occur from its internal buffer memory to the display device. An example of this mode is

Similar to the Non-Burst Mode scenario, if there is sufficient time to transition from HS to LP mode and back again, a timed interval in LP mode may substitute for a Blanking Packet, thus saving power.

6.6 Error-Correcting Code and Checksum

6.6.1 Error-Correcting Code(ECC)

MIPI DSI uses Hamming Code Theory as ECC generate rule. The parity of each bits in ECC are showed as below.

P7=0

```
P6=0P5=D10^D11^D12^D13^D14^D15^D16^D17^D18^D19^D21^D22^D23
P4=D4^D5^D6^D7^D8^D9^D16^D17^D18^D19^D20^D22^D23
P3=D1^D2^D3^D7^D8^D9^D13^D14^D15^D19^D20^D21^D23
P2=D0^D2^D3^D5^D6^D9^D11^D12^D15^D18^D20^D21^D22
P1=D0^D1^D3^D4^D6^D8^D10^D12^D14^D17^D20^D21^D22^D23
P0=D0^D1^D2^D4^D5^D7^D10^D11^D13^D16^D20^D21^D22^D23
```

ECC is generated from the twenty-four bits with in the Packet Header as illustrated in

Figure 6.33, which also serves as an ECC calculation example.

Figure 6.33: 24-bit ECC generation Example

6.6.2 Checksum Generation for Long Packet Payloads

To detect errors in transmission of Long packets, a checksum is calculated over the payload portion of the data packet. Note that, for the special case of a zero- length payload, the 2-byte checksum is set to 0xFFFF. The checksum shall be realized as a 16-bit CRC with a generator polynomial of $x^{16}+x^{12}+x^{5}+x^{0}$

The transmission of the checksum is illustrated in Figure 7.34. The LS byte is sent first, followed by the MS byte. Note that within the byte, the LS bit is sent first.

16-bit Checksum

Figure 6.34: Checksum Transmission

The CRC implementation is presented in Figure 6.35. The CRC shift register shall be initialized to 0xFFFF before packet data enters. Packet data not including the Packet Header then enters as a bitwise data stream from the left, LS bit first. Each bit is fed through the CRC shift register before it is passed to the output for transmission to the peripheral. After all bytes in the packet payload have passed through the CRC shift register, the shift register contains the checksum. C15 contains the checksum's MSB and C0 the LSB of the 16-bit checksum. The checksum is then appended to the data stream and sent to the receiver. The receiver uses its own generated CRC to verify that no errors have occurred in transmission.

Polynomial: x^{16+x^{12+x^{5+x}0}}

Figure 6.35: 16-bit CRC Generation Using a Shift Register

6.7 DPHY

6.7.1 Lane Module

南京观海微电子有很公司 GoHi Microelectronics Co., Ltd.

A PHY configuration contains a Clock Lane Module and one or more Data Lane Modules. Each of these PHY Lane Modules communicates via two Lines to a complementary part at the other side of the Lane Interconnect. Each Lane Module consists of one or more differential High-Speed functions utilizing both interconnect wires simultaneously, one or more single-ended Low-Powe functions operating on each of the interconnect wires individually, and control & interface logic. For proper operation, the set of functions in the Lane Modules on both sides of the Lane Interconnect has to be matched.

6.7.2 Lane Module Type of Clock Lane, Data0, Data1 and Data2

The required functions in a Lane Module depend on the Lane type and which side (master or slave) of the Lane Interconnect the Lane Module is located. There are three main Lane types: Clock Lane, Unidirectional Data Lane and Bi-directional Data Lane. Several PHY configurations can be constructed with these Lane types. In GH8323-I1 Below show the lane module architecture of each lane.

Figure 6.36: Lane Module Type

6.7.3 Master and Slave

Each Link has a Master and a Slave side. The Master provides the High-Speed DDR Clock signal to the Clock Lane and is the main data source. The Slave receives the clock signal at the Clock Lane and is the main data sink. The main direction of data communication, from source to sink, is denoted as the Forward direction. Data communication in the opposite direction is called Reverse transmission. Only bi-directional Data Lanes can transmit in the Reverse direction. In all cases, the Clock Lane remains in the Forward direction, but bi-directional Data Lane(s) can be turned around, sourcing data from the Slave side.

GH8323-I1 serves as Slave side.

6.7.4 Lane States and Line Levels

Transmitter functions determine the Lane state by driving certain Line levels. During normal operation either a HS-TX or a LP-TX is driving a Lane. A HS-TX always drives the Lane differentially. The two LP-TX's drive the two Lines of a Lane independently and single-ended. This results in two possible High- Speed Lane states and four possible Low-Power Lane states. The High-Speed Lane states are Differential- 0 and Differential-1. The interpretation of Low-Power Lane states depends on the mode of operation. The LP-Receivers shall always interpret both High-Speed differential states as LP-00.

Figure 6.37: Line Levels

The Stop state has a very exclusive and central function. If the Line levels show a Stop state for the minimum required time, the PHY state machine shall return to the Stop state regardless of the previous state. This can be in RX or TX mode depending on the most recent operating direction. Table 6.7 lists all the states that can appear on a Lane during normal operation. All LP state periods shall be at least TLPX in duration. State transitions shall be smooth and exclude glitch effects. A clock signal can be reconstructed by exclusive-ORing the Dp and Dn Lines. Ideally, the reconstructed clock has a duration of at least 2*TLPX, but may have a duty cycle other than 50% due to signal slope and trip levels effects.

Otort	Line Volta	age Levels	High-Speed Low-Powe		Power
Start Code	Dp-Line	Dn-Line	Burst Mode	Control Mode	Escape Mode
HS-0	HS Low	HS High	Differential-0	N/A	N/A
HS-1	HS High	HS Low	Differential-1	N/A	N/A
LP-00	LP Low	LP Low	N/A	Bridge	Space
LP-01	LP Low	LP High	N/A	HS-Rqst	Mark-0
LP-10	LP High	LP Low	N/A	LP-Rqst	Mark-1
LP-11	LP High	LP High	N/A	Stop	N/A

6.7.5 Bi-directional Data Lane Turnaround

The transmission direction of a bi-directional Data Lane can be swapped by means of a Link Turnaround procedure. This procedure enables information transfer in the opposite direction of the current direction. The procedure is the same for either a change from Forward-to-Reverse direction or Reverse-to-Forward direction. Notice that Master and Slave side shall not be changed by Turnaround.

Figure 6.38 shows the Turnaround procedure graphically.

6.8 Escape Mode

Escape mode is a special mode of operation for Data Lanes using Low-Power states. With this mode some additional functionality becomes available. A Data Lane shall enter Escape mode via an Escape mode Entry procedure (LP-11, LP-10, LP-00,LP-01, LP-00). As soon as the final Bridge state (LP-00) is observed on the Lines the Lane shall enter Escape mode in Space state (LP-00). If an LP-11 is detected at any time before the final Bridge state (LP-00), the Escape mode Entry procedure shall be aborted and the receive side shall wait for, or return to, the Stop state.

For Data Lanes, once Escape mode is entered, the transmitter shall send an 8-bit entry command, by Spaced-One-Hot coding, to indicate the requested action. Table 6.8 lists all supported Escape mode commands and actions.

Spaced-One-Hot coding means that each Mark state is interleaved with a Space state. Each symbol consists therefore of two parts: a One-Hot phase (Mark-0 or Mark-1) and a Space phase. The TX shall send Mark-0 followed by a Space to transmit a 'zero-bit' and it shall send a Mark-1 followed by a Space to transmit a 'one-bit'. A Mark that is not followed by a Space does not represent a bit. The last phase before exiting Escape mode with a Stop state shall be a Mark-1 state that is not part of the communicated bits, as it is not followed by a Space state.

Figure 6.39: Trigger-Reset Command in Escape Mode

Escape Mode Action	Command Type	Entry Command Pattern (first bit transmitted to last bit transmitted)
Low-Power Data Transmission	mode	11100001
Ultra-Low power State	mode	00011110
Reset-Trigger	Trigger	01100010
TE-Trigger	Trigger	01011101
Acknowledge	Trigger	00100001

 Table 6.8: Escape Entry Codes

6.9 Remote Trigger

Trigger signaling is the mechanism to send a flag to the protocol at the receiving side, on request of the protocol on the transmitting side. This can be either in the Forward or Reverse direction depending on the direction of operation and available Escape mode functionality. Trigger signaling requires Escape mode capability and at least one matching Trigger Escape Entry Command on both sides of the interface. Any bit received after a Trigger Command but before the Lines go to Stop state shall be ignored. Therefore, dummy bytes can be concatenated in order to provide Clock information to the receive side.

6.10 Low-Power Data Transmission(LPDT)

If the Escape mode Entry procedure is followed-up by the Entry Command for Low-Power Data Transmission (LPDT), Data can be communicated by the protocol at low speed, while the Lane remains in Low-Power mode. Data shall be encoded on the lines with the same Spaced-One-Hot code as used for the Entry Commands. The data is self-clocked by the applied bit encoding and does not rely on the Clock Lane. The Lane can pause while using LPDT by maintaining a Space state on the Lines. A Stop state on the Lines stops LPDT, exits Escape mode, and switches the Lane to Control mode. The last phase before Stop state shall be a Mark-1 state, which does not represent a data-bit. At the end of LPDT the Lane shall return to the Stop state.

Figure 6.40: Two Data Byte Low-Power Data Transmission Example

6.11 Ultra-Low Power State(ULPS)

If the Ultra-Low Power State Entry Command is sent after an Escape mode Entry command, the Lane shall enter the Ultra-Low Power State (ULPS). This command shall be flagged to the receive side Protocol. During this state, the Lines are in the Space state (LP-00). Ultra-Low Power State is exited by means of a Mark-1 state with a length TWAKEUP followed by a Stop state.

6.12 TE Trigger

A Command Mode display module has its own timing controller and local frame buffer for display refresh. In some cases the host processor needs to be notified of timing events on the display module, e.g. the start of vertical blanking or similar timing information. In a traditional parallel-bus interface like DBI-2, a dedicated signal wire labeled TE (Tearing Effect) is provided to convey such timing information to the host processor. In a DSI system, the same information, with reasonably low latency, shall be transmitted from the display module to the host processor when requested, using the bidirectional Data Lane.

For polling to the display module, the host processor shall detect the current scan line information with a DCS command such as get_scan_line to avoid Tearing Effects. For TE-

reporting from the display module, the TE-reporting function is enabled and disabled by three DCS commands to the display module's controller: set_tear_on, set_tear_scanline, and set_tear_off.

set_tear_on and set_tear_scanline are sent to the display module as DSI Data Type 0x15 (DCS Short Write, one parameter) and DSI Data Type 0x39 (DCS Long Write/write_LUT), respectively. The host processor ends the transmission with Bus Turn-Around asserted, giving bus possession to the display module. Since the display module's DSI Protocol layer does not interpret DCS commands, but only passes them through to the display controller, it responds with a normal Acknowledge and returns bus possession to the host processor. In this state, the display module cannot report TE events to the host processor since it does not have bus possession.

To enable TE-reporting, the host processor shall give bus possession to the display module without an accompanying DSI command transmission after TE reporting has been enabled. This is accomplished by the host processor's protocol logic asserting (internal) Bus Turn-Around signal to its D-PHY functional block. The PHY layer will then initiate a Bus Turn-Around sequence in LP mode, which gives bus possession to the display module.

Since the timing of a TE event is, by definition, unknown to the host processor, the host processor shall give bus possession to the display module and then wait for up to one video frame period for the TE response. During this time, the host processor cannot send new commands, or requests to the display module, because it does not have bus possession.

When the TE event takes place the display module shall send TE event information in LP mode using a specified trigger message available with D-PHY protocol via the following sequence:

•The display module shall send the LP Escape Mode sequence

•The display module shall then send the trigger message byte 01011101 (shown here in first bit to last bit sequence)

•The display module shall then return bus possession to the host processor

This Trigger Message is reserved by DSI for TE signaling only and shall not be used for any other purpose in a DSI-compliant interface.

6.13 High Speed Transmission

6.13.1 Burst Payload Data

The payload data of a burst shall always represent an integer number of payload data bytes with a minimum length of one byte. Note that for short bursts the Start and End overhead consumes much more time than the actual transfer of the payload data.

There is no maximum number of bytes implied by the PHY. However, in the PHY there is no autonomous way of error recovery during a HS data burst and the practical BER will not be zero. Therefore, it is important to consider for every individual protocol what the best choice is for maximum burst length.

6.13.2 Start-of-Transmission

After a Transmit request, a Data Lane leaves the Stop state and prepares for High-Speed mode by means of a Start-of-Transmission (SoT) procedure. Table 6.6 describes the sequence of events on TX and RX side.

TX Side	RX Side
Drives Stop state (LP-11)	Observes Stop state
Drives HS-Rqst state (LP-01) for time T _{LPX}	Observes transition from LP-11 to LP-01 on the Lines
Drives Bridge state (LP-00) for time T _{HS-PREPARE}	Observes transition from LP-01 to LP-00 on the Lines, enables Line Termination after time T _{D-TERM-EN}
Enables High-Speed driver and disables Low-Powerdrivers simultaneously.	
Drives HS-0 for a time THS-ZERO	Enables HS-RX and waits for timer T _{HS-SETTLE} to expire in order to neglect transition effects
	Starts looking for Leader-Sequence
Inserts the HS Sync-Sequence '00011101' beginning on a rising Clock edge	
	Synchronizes upon recognition of Leader Sequence '011101'
Continues to Transmit High-Speed payload data	
	Receives payload data

Table 6.9: Start-of-Transmission Sequence

6.13.3 End-of-Transmission

At the end of a Data Burst, a Data Lane leaves High-Speed Transmission mode and enters the Stop state by means of an End-of-Transmission (EoT) procedure. Table 6.7 shows a possible sequence of events during the EoT procedure. Note, EoT processing may be handled by the protocol or by the D-PHY.

TX Side	RX Side
Completes Transmission of payload data	Receives payload data
Toggles differential state immediately after last payload data bit and keeps that state for a time $T_{\text{HS-TRAIL}}$	
Disables the HS-TX, enables the LP-TX, and drives Stop state (LP-11) for a time T _{HS-EXIT}	Detects the Lines leaving LP-00 state and entering Stop state (LP-11) and disables Termination
	Neglect bits of last period THS-SKIP to hide transition effects
	Detect last transition in valid Data, determine last valid Data byte and skip trailer sequence

6.13.4 High Speed Data Transmission

Figure 6.41 shows the sequence of events during the transmission of a Data Burst. Transmission can be started and ended independently for any Lane by the protocol. However, for most applications the Lanes will start synchronously but may end at different times due to an unequal amount of transmitted bytes per Lane.

Figure 6.41: High-Speed Data Transmission in Bursts

6.13.5 High Speed Clock Transmission

南京观海微电子有侵公司

In High-Speed mode the Clock Lane provides a low-swing, differential DDR (half-rate) clock signal from Master to Slave for High-Speed Data Transmission. The Clock signal shall have quadrature-phase with respect to a toggling bit sequence on a Data Lane in the Forward direction and a rising edge in the center of the first transmitted bit of a burst. The detail Clock Start and Stop procedures are shown in Figure 6.42.

Figure 6.42: Switching the Clock Lane between Clock Transmission and Low-Power Mode

6.14 System Power state

Each Lane within a PHY configuration, that is powered and enabled, has potentially three different power consumption levels: High-Speed Transmission mode, Low-Power mode and Ultra-Low Power State.

6.15 Initialization

After power-up, the Slave side PHY shall be initialized when the Master PHY drives a Stop State (LP-11) for a period longer then TINIT. The first Stop state longer than the specified TINIT is called the Initialization period. The Master side shall ensure that a Stop State longer than TINIT does not occur on the Lines before the Master is initialized.

TINIT must larger than 500us.

6.16 Global Operation Flow Diagram

Figure 6.43 shows the operational flow diagram for a Data Lane Module. Within both TX and RX four main processes can be distinguished: High-Speed Transmission, Escape mode, Turnaround, and Initialization.

Figure 6.43: Data Lane Module State Diagram

Figure 6.44 shows the state diagram for a Clock Lane Module. The Clock Lane Module has four major operational states: Init (of unspecified duration), Low-Power Stop state, Ultra-Low Power state, and High- Speed clock transmission.

Figure 6.44: Clock Lane Module State Diagram

7 Gamma characteristic correction function

The GH8323-I1 incorporates gamma adjustment function for the 16.7m-color display. Gamma adjustment operation is implemented by deciding the 17 grayscale levels firstly in gamma adjustment control registers to match the LCD panel. These registers are available both for positive polarities and negative polarities.

The block consists of two gamma resister streams one is for positive polarity and the other is for negative polarity, each one including 17 gamma reference voltages. VGM P/N (0, 4, 8, 12, 28, 52, 76, 100, 131, 155, 179, 203, 227, 273, 247, 251, 255).

8 Function Description

8.1 Digital Gamma (separate RGB gamma)

The GH8323-I1 offers two kinds of Gamma adjustment ways to come to accord with LC characteristic, one kind is through analog gamma circuit directly, another one is adjusted by the digital gamma correction. The Gamma adjustment way is selected by internal register DGC_EN bit.

1) Gamma adjustment of Source Driver

2) Gamma adjustment of Digital Gamma Correction

8.2 CABC

The CABC, a dynamic backlight control function, drastically reduces power consumption of the luminance source. The GH8323-I1 wll refer the gray scale content of the display image to output the LEDPWM pulse to the LED driver. The content of gray scale can be increased while simultaneously lowering the brightness of the backlight to achieve the same perceived brightness. The adjusted gray level scale and the power consumption reduction depend on the content of theimage.

Figure 8.2: CABC Block Diagram

The GH8323-I1 can calculate the backlight brightness level and send a LEDPWM pulse to the LED driver via LEDPWIM pacfor backlight brightness control purposes. The PWM frequency can be adjusted by PWM DIV parameters, and the calculating equation is shown below.

Source Channel :3*540=1620 pixel541~pixel1080 DIR=L Source Scan D		Scan Direction	Source Chan pixel1~pixel5	nel :3*540=16 540	200	
SYNC_L0 SYNC_L1 SYNC_L2 SYNC_L3 SYNC_L4	IC bump side down CAS=1,ADDR[1:0]=00	SYNC_R0 SYNC_R1 SYNC_R2 SYNC_R3 SYNC_R4	SYNC_L0 SYNC_L1 SYNC_L2 SYNC_L3 SYNC_L4		np side down ADDR[1:0]=01	SYNC_R0 SYNC_R1 SYNC_R2 SYNC_R3 SYNC_R4
					• 0	
DP/N1	DP/N3 DP/N2 CKP/CKN				X/ ·	
LVDS Resol	ution :1080RGB=pixel1~pixel1080					

8.4 **BIST**

8.4.1 BIST function

When BIST is trigger to low, then GH8323-I1 will leave normal operation mode and starts to generate the BIST pattern to LCD panel without MIPI input signals.

8.4.2 BIST pattern

We support the BIST mode to test panel and debug. It can stop pattern at any time while BISTB set to low. The pattern sequence is listed below.

Configuration reg_bist_pause[3:0],Different patterns can be displayed.

69

GH8323-i1 Datasheet

Black=4'h0	White=4'h1	Red=4'h2	Green=4'h3
Blue=4'h4	Color Bar=4'h5	Frame edge=4'h6	Gray level H=4'h7
Gray level V=4'h8	Chessboard=4'h9		

9 Command

9.1 Command List

9.1.1 Standard command

	Operation code	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Function				
00	NOP	W	0	0	0	0	0	0	0	0	No Operation				
01	SWRESET	W	0	0	0	0	0	0	0	1	Software Reset				
04	RDDIDIF	W	0	0	0	0	0	1	0	0					
		R	ID1[7:0]								Read Display Identification Information				
		R													
		R	ID3[7:0]												
05	RDDST	W	0	0	0	0	1	0	0	1					
		R	D[31:24]												
		R				D[2	23:16]				Read Display Status				
		R				D	[15:8]				1				
		R				D	[7:0]								
06	RDDPM	W	0	0	0	0	1	0	1	0	Read display power				
		R	D7	D6	D5	D4	D3	D2	0	0	mode				
07	RDDMADCTL	W	0	0	0	0	1	0	1	1	- Read display MADCT				
		R	D7	D6	D5	D4	D3	D2	D1	D0					
08	RDDCOLMOD	W	0	0	0	0	1	1	0	0	Read display pixel				
		R	0	D6	D5	D4	0	D2	D1	D0	format				
09	RDDIM	W	0	0	0	0	1	1	0	1	Read display image mode				
		R	D7	D6	D5	D4	D3	D2	D1	D0					
10	RDDSM	w	0	0	0	0	1	1	1	0	Read display signal				
		R	D7	D6	D5	D4	D3	D2	D1	D0	mode				
0A	RDDSDR	W	0	0	0	0	1	1	1	1	Read display				
		R	D7	D6	D5	D4	0	0	0	D0	self-diagnostic result				
0B	SLPIN	w	0	0	0	1	0	0	0	0	Sleep In				

							1			1				
11	SLPOUT	W	0	0	0	1	0	0	0	1	Sleep Out			
13	NORON	W	0	0	0	1	0	0	1	1	Normal display mode on			
20	INVOFF	W	0	0	1	0	0	0	0	0	Display inversion off			
21	INVON	W	0	0	1	0	0	0	0	1	Display inversion on			
22	ALLPOFF	W	0	0	1	0	0	0	1	0	All Pixel Off			
23	ALLPON	W	0	0	1	0	0	0	1	1	All Pixel On			
20	GAMSET	W	0	0	1	0	0	1	1	0	Commo cot			
26		W	CG[7:0]								- Gamma set-			
28	DISPOFF	W	0	0	1	0	1	0	0	0	Display off			
29	DISPON	W	0	0	1	0	1	0	0	1	Display on			
34	TEOFF	W	0	0	1	1	0	1	0	0	Tearing Effect Line OFF			
05	TEON	W	0	0	1	1	0	1	0	1	Tearing Effect Line ON			
35		W	х	Х	Х	Х	х	x	x	М				
		W	0	0	1	1	0	1	1	0	Memory Access Control			
36	MADCTL	W	MY	MX	х	х	BGR	-	LR	UD				
38	IDMOFF	W	0	0	1	1	1	0	0	0	Idle mode off			
39	IDMON	W	0	0	1	1	1	0	0	1	Idle mode on			
3A	COLMOD	W	0	0	1	1	1	0	1	0	Interface Pixel Format,			
ЗА		W	х	D6	D5	D4	Х	х	х	Х				
	TESL	W	0	1	0	0	0	1	0	0				
44		W	TELINE[15:8]								Set Tear Effect Scan			
		W				TEL	NE[7:0]	-	-		– Lines			
	GETSCAN	w	0	1	0	0	0	1	0	1	Return the current			
45		R			scanline									
		R	SLN[7:0]											
51	WRDISBV	w	0	1	0	1	0	0	0	1	Write Display			
01		W				DB	V[7:0]				Brightness			
52	RDDISBV	W	0	1	0	1	0	0	1	0	Read Display			
01		R			[]	DB	V[7:0]	ſ	ſ	1	Brightness Value			
53	WRCTRLD	W	0	1	0	1	0	0	1	1	Write CTRL Display			
		W	х	Х	BCTRL	Х	DD	BL	х	Х				
54	RDCTRLD	W	0	1	0	1	0	0	1	1	Read Control Value			
U-F		R	Х	Х	BCTRL	0	DD	BL	0	0	Display-			
DA	RDID1	W	1	1	0	1	1	0	1	0	– Read ID1			
DA		R			m	odule's ma	anufacture	er[7:0]						

南京观海微电子有限公司 GoHi Microelectronics Co., Ltd.

GH8323-i1 Datasheet

DB	RDID2	W	1	1	0	1	1	0	1	1	Read ID2
		R			LCD	module/d	river versi	on [7:0]			
DC	20102	W	1	1	0	1	1	1	0	0	Band ID2
DC	RDID3	R			L	CD modul	e/driver ID	[7:0]			Read ID3
		W	1	0	1	0	0	0	0	1	
		R	x	x	x	x	x	x	x	х	
		R	x	x	x	x	x	x	x	х	
A1	RDDDB	R	x	x	x	x	x	x	x	х	Read the DDB from
AI	ВОООВ	R	x	x	x	x	x	x	x	x	the provided location.
		R	x	x	x	x	x	x	x	x	
		R	х	x	х	х	x	х	x	x	
		R	х	x	х	х	x	х	x	x	
		W	1	0	1	0	1	0	0	0	
		R	х	x	х	х	x	x	x	x	
		R	х	x	х	х	x	x	x	x	
A8		R	х	x	х	х	x	x	x	x	Continue reading the DDB from the last read
Að	RDDDBCON	R	х	x	х	x	x	x	x	х	location.
		R	х	x	х	x	x	x	x	х	location.
		R	х	x	х	x	x	x	x	х	
		R	х	x	х	x	x	x	x	х	
AA	RDFCS	W	1	0	1	0	1	0	1	0	Read First Checksum
~~		R				FC	S[7:0]		-		Read First CheckSulli
AF	RDCCS	W	1	0	1	0	1	1	1	1	Read Continue
АГ	RDUUS	R				CC	S[7:0]				Checksum

(,)

9.1.2 Standard Command Accessibility

Hex Code	Operation code	Normal Mode On, Idle Mode Off, Sleep Mode Off	Normal Mode On, Idle Mode On, Sleep Mode Off	Partial Mode On, Idle Mode Off, Sleep Mode Off	Partial Mode On, Idle Mode On, Sleep Mode Off	Sleep Mode On
00	NOP	Yes	Yes	Yes	Yes	Yes
01	SWRESET	Yes	Yes	Yes	Yes	Yes
04	RDDIDIF	Yes	Yes	Yes	Yes	Yes
05	RDDST	Yes	Yes	N/A	N/A	Yes
06	RDDPM	Yes	Yes	Yes	Yes	Yes
07	RDDMADCTL	Yes	Yes	Yes	Yes	Yes
08	RDDCOLMOD	Yes	Yes	Yes	Yes	Yes
09	RDDIM	Yes	Yes	Yes	Yes	Yes
0A	RDDSM	Yes	Yes	Yes	Yes	Yes
0B	RDDSDR	Yes	Yes	Yes	Yes	Yes
0C	SLPIN	Yes	Yes	Yes	Yes	Yes
0D	SLPOUT	Yes	Yes	Yes	Yes	Yes
0E	PTLON	Yes	Yes	Yes	Yes	Yes
0F	INVOFF	Yes	Yes	Yes	Yes	Yes
10	INVON	Yes	Yes	Yes	Yes	Yes
11	ALLPOFF	Yes	Yes	N/A	N/A	Yes
12	ALLPON	Yes	Yes	N/A	N/A	Yes
20	GAMSET	Yes	Yes	Yes	Yes	Yes
21	DISPOFF	Yes	Yes	Yes	Yes	Yes
22	DISPON	Yes	Yes	Yes	Yes	Yes
23	TEOFF	Yes	Yes	Yes	Yes	Yes
26	TEON	Yes	Yes	Yes	Yes	Yes
28	MADCTL	Yes	Yes	Yes	Yes	Yes
29	IDMOFF	Yes	Yes	Yes	Yes	Yes
34	IDMON	Yes	Yes	Yes	Yes	Yes
35	COLMOD	Yes	Yes	Yes	Yes	Yes
36	TESL	Yes	Yes	Yes	Yes	Yes
38	GETSCAN	Yes	Yes	Yes	Yes	Yes
39	WRDISBV	Yes	Yes	Yes	Yes	Yes
3A	RDDISBV	Yes	Yes	Yes	Yes	Yes
44	WRCTRLD	Yes	Yes	Yes	Yes	Yes
45	RDCTRLD	Yes	Yes	Yes	Yes	Yes
51	RDID1	Yes	Yes	Yes	Yes	Yes
52	RDID2	Yes	Yes	Yes	Yes	Yes
53	RDID3	Yes	Yes	Yes	Yes	Yes
54	RDDDB	Yes	Yes	Yes	Yes	Yes
DA	RDDDBCON	Yes	Yes	Yes	Yes	Yes
DB	RDFCS	Yes	Yes	Yes	Yes	Yes
DC	RDCCS	Yes	Yes	Yes	Yes	Yes

9.1.3 Standard Command Default Modes and Values

	Parameters	Power-on Sequence	SW Reset	HW Reset
NOP	None	N/A	N/A	N/A
SWRESET	None	N/A	N/A	N/A
RDDIDIF	3	OTP Value	OTP Value	OTP Value
PDDST	1	Refer to corresponding	Refer to corresponding command	Refer to corresponding
KDD31	1	command parameters	parameters	command parameters
RDDPM	1	08h	08h	08h
RDDMADCTL	1	00h	Refer to corresponding command parameters	00h
RDDCOLMOD	1	07h	07h	07h
RDDIM	1	00h	00h	00h
RDDSM	1	00h	00h	00h
RDDSDR	1	00h	00h	00h
SLPIN	None	Sleep In Mode	Sleep In Mode	Sleep In Mode
SLPOUT	None	Sleep In Mode	Sleep In Mode	Sleep In Mode
PTLON	None			
INVOFF	None	Display Inversion Off	Display Inversion Off	Display Inversion Off
INVON	None			Display Inversion Off
				All Pixel Off
				All Pixel Off
				01h
	-			Display Off
				Display Off
				TE Off
				TE Off
				00h
				Idle Mode Off
				Idle Mode Off
				07h
				0000h
-			*	0000h
				000011 00h
				00h
-				00h
				00h
				OTP Value
				00h
RDFCS	1	00h	00h	00h
	DDMADCTL RDDIM RDDSM RDDSDR SLPIN SLPOUT PTLON INVOFF INVOFF ALLPOFF ALLPOFF ALLPON GAMSET DISPOFF DISPOFF DISPON TEOFF TEON MADCTL IDMOFF IDMOFF IDMOFF IDMOFF GETSCAN WRDISBV RDDISBV WRCTRLD RDDISBV WRCTRLD RDDISBV RDDISBV RDDISBV RDDISBV RDDISBV RDDISBV RDDISBV RDDISBV RDDISBV RDDISBV RDDISBV RDDISBV RDDDB RDDDBCON	RDDPM1RDDPADCTL1RDDCOLMOD1RDDSM1RDDSM1RDDSDR1SLPINNoneSLPOUTNonePTLONNoneINVOFFNoneINVOFFNoneALLPOFFNoneGAMSET1DISPOFFNoneTEOFFNoneTEOFFNoneTEON1MADCTL1IDMONNoneCOLMOD1TESL2GETSCAN2WRDISBV1RDDISBV1RDID11RDID21RDDBAllRDDBCONAllRDDBAllRDDBCONAll	RDDST1command parametersRDDPM108hRDDPM100hRDDMADCTL100hDDCOLMOD107hRDDIM100hRDDSM100hRDDSM100hRDDSDR100hSLPINNoneSleep In ModeSLPOUTNoneSleep In ModePTLONNoneDisplay Inversion OffINVOFFNoneDisplay Inversion OffALLPOFFNoneAll Pixel OffALLPONNoneAll Pixel OffGAMSET101hDISPOFFNoneDisplay OffDISPONNoneDisplay OffTEOFFNoneTE OffMADCTL100hIDMOFFNoneIdle Mode OffIDMONNoneIdle Mode OffIDMONNoneIdle Mode OffDISPL20000hRESL20000hRDTSEV100hRDDISBV100hRDDISBV100hRDDI31OTP ValueRDDBAllOTP ValueRDDBAllOTP ValueRDDDBAllOTP ValueRDDDBAllOTP Value	RDDST1command parametersparametersRDDPM108h08hRDDMADCTL100hRefer to corresponding command <bbr></bbr> parametersDDCOLMOD107h07hRDDM100h00hRDDSM100h00hRDDSM100h00hRDDSDR100h00hRDDSDR100h00hRDDSDR100h00hSLPINNoneSleep In ModeSleep In ModeSLPOUTNoneDisplay Inversion OffDisplay Inversion OffINVOFFNoneDisplay Inversion OffDisplay Inversion OffINVOFFNoneDisplay Inversion OffDisplay Inversion OffALLPOFFNoneAll Pixel OffAll Pixel OffALLPOFFNoneAll Pixel OffAll Pixel OffGAMSET101h01hDISPOFFNoneDisplay OffDISPOFFNoneDisplay OffDISPOFFNoneIdle Mode OffIDMOFFNoneIdle Mode OffIDMONNoneIdle Mode

9.2 Command Description

9.2.1 NoP (00h)

CMD/PAs	R/W	D7	D6	D5	D4	D3	D2	D1	D0	HEX
Command	W	0	0	0	0	0	0	0	0	00
Description			does not l inate a Fr			•			P comma	nd may
Restriction	-									
Flow Chart	-									

9.2.2 SWRESET: Software Reset (01h)

.2.2 SWRESE	T: So	ftware	Reset	(01h)					9	
CMD/PAs	R/W	D7	D6	D5	D4	D3	D2	D1	D0	HEX
Command	W	0	0	0	0	0	0	0	1	01
Description		splay mo t values.	dule perfo	orms a sot	ftware res	et. Regis	ters are w	ritten with	their SW	/ Reset
	The Fr	ame Mer	nory cont	ents are ι	inaffected	l by this c	ommand			
	The ho	ost proces	ssor must	wait 5 mi	lliseconds	s before s	ending ar	iy new col	mmands	to a
	display	/ module	following	this comr	nand. The	e display i	module up	odates the	registers	during
Restriction	this tin	ne.								
Restriction	lf a SV	VRESET	is sent wł	nen the di	splay mo	dule is in	SLPIN Mo	ode, the h	ost proce	ssor
	must v	vait 120 n	nillisecono	ds before	sending a	an SLPOl	JT comma	and.		
	5	SWRESE	T should ı	not be ser	nt when th	ne display	module i	s not in SI	_PIN mod	le.
					SWE	RESET				
				\langle	Blan	k Display				
Flow Chart						V	$\overline{\ }$			
\bigcirc					Load S/\	N Defaults	5			
					SLPIN	Mode				

9.2.3 RDDIDIF: Read Display Identification Information (04h)

CMD/PAs	R/W	D7	D6	D5	D4	D:	3 D2	2	D1	D0	HEX		
Command	w	0	0	0	0	0	1		0	0	04		
Parameter 1	R			•	I	D1[7:0]							
Parameter 2	R				I	D2[7:0]							
Parameter 3	R				I	D3[7:0]							
Description	The 1 ^s supplie The 2 ⁿ B/W), define	^t Paramet er and for ^d Parame 1=Module d by displ	ter identifi xx is defi ter has 2 e (Color). ay supplie struction s	ies the LC ned as xx purposes Bits 6~0 a er and it c pecificatio Value V[CD mod HEX. Bit7 (are use hanges	dule's ma (MSB) de ed to trac s each tii ee Table:		er. It type) mc sion	e of panel odule/drive	. 0=Drive er versio	r (STN n. It is		
	The 3 ^r	ID Byte Value V[7:0]VersionChanges80h81h82h83h83h84h85h											
	for this	LCD pro	ject modu	ule is defir	ned as	XXHEX.							
Restriction	-		1					-					
Flow Chart		- RDDIDIF (04h) Send ID1[7:0] Send ID2[7:0]											

9.2.4 RDDST: Read Display Status (09h)

CMD/PAs	R/W	D7	D6	D5	D4	D3	D2	D1	D0	HEX								
Command	W	0	0	0	0	1	0	0	1	09								
Parameter 1	R				D[3	1:24]												
Parameter 2	R				D[2:	3:16]												
Parameter 3	R				D[1	5:8]												
Parameter 4	R				D[7:0]												
	This co	ommand	indicates	the currer	nt status o	of the disp	olay as de	scribed	in the tabl	e below:								
	Bit		Descriptio	on	(0) - D	ooster Off	Val	ue										
	D31	Boost	er Voltage	e Status	'1' = Bo	ooster On												
	D30	Page	e Address	Order	'1' = Bo	op to Botto ottom to T	op (MAD	CTL B7	='1').									
	D29	Colum	nn Addres	s Order	'1' = Ri	eft to Righ ght to Lef	t (MADC ⁻	TL B6='										
	D28	Page	e/Column	Order	'1' = Ro	ormal (MA otation (M	ADCTL E	35='1').										
	D27		lay Devic efresh Or						DCTLB4='(DCTLB4='									
	D26	RGB/BGR Order'0' = RGB (MADCTL B3='0'). '1' = BGR (MADCTL B3='1').Display Data Latch Data'0' = Refresh Left to Right (MADCTL						^{er} (1' = BGR (MADCTL B3='1').										
	D25	1 = BGR (MADCTL B3= 1). Display Data Latch Data 0' = Refresh Left to Right (MADCTL B2='0') 0' = Refresh Right to Left (MADCTL B2='1') 0' = Source output Left to Right (MADCTL B2='1')).									
	D24	Sourc	ce san see	quence	 '0' = Source output Left to Right (MADCTL B1='0' '1' = Source output Right to Left (MADCTL B1='1' 													
	D23	Gate	e san seq	uence					MADCTL E MADCTL E									
	D22					nterface I Not Def		D22 [0	021 D20 0 0									
			`			Not Def		0	0 1									
Description	D21		terface C		Not Defined010Not Defined011													
		Pixel	Format D	efinition		Not Def 16 Bit/F		1	0 0 0 1									
	Dee					18 Bit/F	1 0											
	D20					24 Bit/F	Pixel	1	1 1]								
	D19		e Mode O			le Mode C												
	D18	Parti	ial Mode (On/Off		artial Mod eep In Mo	-	= Partia	I Mode On									
	D17	5	Sleep In/C	Dut		eep III MC eep Out N												
	D16	Displ	ay Norma On/Off	l Mode	'1' = No	artial or So ormal Moo	de.											
	D15	Vertica	al Scrolling	g Status		ertical Scr ertical Scr												
	D14	Horizon	tal Scrolli	ng Status	This bit to '0'	t is not ap	plicable f	or this p	oroject, so i	t is set								
	D13	Inv	ersion St	atus		version is version is												
	D12	A	All Pixels (On	'0' = Normal mode.'1' = All Pixels On.													
	D11	A	All Pixels (Off	0' = Normal mode. '1' = All Pixels Off.													
	D10	D	isplay On	/Off		splay is C splay is C												

I	1					
	D9	Tearing Effect Line On/Off	'0' =Tearing Effect Line Off.'1' = Tearing Effect On.			
	D8		Gamma Curve Selected Gamma Curve 1	B8 0	В7 0	B6 0
			Gamma Curve 2	0	0	1
			Gamma Curve 3	0	1	0
	D7	Gamma Curve Selection	Gamma Curve 4	0	1	1
			Not Defined	1	0	0
			Not Defined	1	0	1
	D6		Not Defined	1	1	0
			Not Defined	1	1	1
	D5	Tearing Effect Output Line Mode	'0' = Mode 1, V-Blanking only.'1' = Mode 2, both H-Blanking	and \	/-Blar	nking.
	D4	Horizontal Sync. (HS, DPI I/F)	'0' = Horizontal Sync. line is O'1' = Horizontal Sync. line is O			U
	D3	Vertical Sync. (VS, DPI I/F)	'0' = Vertical Sync. line is Off (''1' = Vertical Sync. line is On ('			
	D2	Pixel Clock (DCK, DPI I/F)	'0' = CK line is Off ("Low"). '1' = CK line is On ("High").	Ĭ		
	D1	Reserved	Always = '0'			
	D0	Parity Error on DSI	'0'=No Parity Error. '1'=Parity Error.	/		
	Note:	This bit indicates current stat	us of the line when this comman	d has	s bee	n sent.
Restriction	-					
		-				
		٢				
			RDDST (09h)			
			Send D[31:24]			
			V			
Flow Chart			Send D[23:16]			
			Send D[15:8]			
		<u> </u>				
			Send D[7:0]			

CMD/PAs HEX R/W D7 D6 D5 D4 D3 D2 D1 D0 Command W 0 0 0 0 1 0 1 0 0A Parameter 1 R D7 D6 0 D4 D3 D2 0 0 This command indicates the current status of the display as described in the table below: Bit Description Value D7 Not Defined Set to '0' '0' = Idle Mode Off. Idle Mode On/Off D6 '1' = Idle Mode On. 0' = Sleep In Mode. Sleep In/Out D4 '1' = Sleep Out Mode. '0' = Display Normal Mode Off. Display Normal Mode On/Off D3 '1' = Display Normal Mode On. '0' = Display is Off. D2 Display On/Off '1' = Display is On. Not Defined Set to '0' D1 Set to '0' D0 Not Defined Restriction -RDDMP(0Ah) Flow Chart Send D[7:0]

9.2.5 RDDPM: Read Display Power Mode (0Ah)

9.2.6 RDDMATCDL: Read Display MADCTL (0Bh)

CMD/PAs	R/W	D7	D6	D	5	D4	D3	D2	D1	D0	HEX
Command	W	0	0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $							0B
Parameter 1	R	D7	D6	C)	0	D3	0	D1	D0	
	This c	ommand ir	ndicates th	ne cur	rent	status of	the displa	y as desc	ribed in th	ne table be	elow:
	Bit	Des	cription					Value			
	D7	Page Add	ress Orde	r		•	,			í.	
D	D6	Page Address Order'0' = Top to Bottom (When MADCTL B7='0'). '1' = Bottom to Top (When MADCTL B7='1').Column Address Order'0' = Left to Right (When MADCTL B6='0'). '1' = Right to Left (When MADCTL B6='1').RGB/BGR Order'0' = RGB (When MADCTL B3='0'). '1' = BGR (When MADCTL B3='1').Source san sequence'0' = Source output Left to Right (When MADCTL B1='0'). '1' = Source output Right to Left (When MADCTL B1='1').Gate san sequence'0' = Gate output Top to Bottom (When MADCTL B0='0').									
Description	D3	RGB/BGR	Order						í i		
	D1	Source sa	n sequen	ce			-	-			
	D0	D7Page Address Order'1' = Bottom to Top (When MADCTL B7='1').D6Column Address Order'0' = Left to Right (When MADCTL B6='0').'1' = Right to Left (When MADCTL B6='1').'0' = RGB (When MADCTL B6='1').D3RGB/BGR Order'0' = RGB (When MADCTL B3='0').D1Source san sequence'0' = Source output Left to Right (When MADCTL B1='0').D0Gate san sequence'0' = Gate output Top to Bottom (When MADCTL B0='0').					,				
Restriction	-										
Flow Chart		D1 Source san sequence '1' = Source output Right to Left (When MADCTLB1='1'). D0 Gate san sequence '0' = Gate output Top to Bottom (When MADCTLB0='0'). '1' = Gate output Bottom to Top (When MADCTLB0='1').									

9.2.7 RDDCOLMOD: Read Display COLMOD (0Ch)

CMD/PAs	R/W	D7	D6	D5	D4	D3	D2	D1	D0	HEX
Command	W	0	0	0	0	1	1	0	0	0C
Parameter 1	R	-	D6	D5	D4	-	D2	D1	D0	
Description	D[6:4] - D[2:0] - If a part parame Therefo	- DPI Inte - DBI Inte ticular inte	rface Cold rface Cold erface, eitl ed from th DBI displa	or Pixel Fo or Pixel Fo ner DBI or ne display y module	ormat Defi ormat Defi ⁻ DPI, is n module a , the Host	GB image inition, fixe inition, fixe ot used th are undefir shall igno	ed @111 ed @000. ien the co ned.	rrespondi	ng bits in	
Restriction	-									
Flow Chart		2	[RDDCOL Send	↓ ▼	Ch)	8			

9.2.8 Read Display Image Mode (0Dh)

CMD/PAs	R/\	N D	7	D6	٦	05	D4	D	3	D2	D)1	D0	HEX		
Command	W	/ C)	0		0	0	1		1	(0	1	0D		
Parameter 1	R	C C)	0	C)5	D4	D	3	D2	D)1	D0			
	This	s commai	nd in	dicates th	ne cu	rrent status of the display as described in the table b										
	Bit	0	Desc	ription					Va	alue						
			_			'0' =										
	D5	Inversio	on O	n/Off		'1' =										
						'0' = Normal Display										
	D4	All Pixe	els On '1' = White Display													
	D3	All Pixe	I Pixels Off '0' = Normal Display													
							Black D		DI		DA		G			
						Gam Curv		D2	D1		D0		Gamma Set(26h)			
Description	D2					Seleo										
				Gam Curv		0	0		0		CG0					
						Gam		0	0		1	(CG1			
	D1					Curv	re2									
		Gamma Curv		ve Selection		Gam Curv		0	1		0	(CG2			
						Gam		0	1		1	(CG3			
						Curv	re4						0.05			
							defined	1	0		0					
	D0						defined defined	1	0		<u>1</u> 0					
	DU						defined	1	1		1					
Restriction	-															
									_							
					~											
		RDDIM (0Dh)														
Flow Chart								-								
				_			↓									
						Sa		·01		/	Ŧ					
	Send D[7:0]															

9.2.9 RDDSM: Read Display Signal Mode (0Eh)

CMD/PAs	R/\	V D7	D6	D5	D4	D3	D2	D1	D0	HEX	
Command	W	0	0	0	0	1	1	1	0	0E	
Parameter 1	R	D7	D6	D5	D4	D3	D2	D1	D0		
	This	command ir	ndicates th	ne current	status	of the displa	y as desc	ribed in th	ne table be	elow:	
	Bit		Descript	ion			Va	lue			
	D7	Tearing Effe	ect Line C	n/Off		'0' = Tearir '1' = Tearir	-				
	D6	Tearing Effe	ect Line O	output Moo	le	'0' = Mode '1' = Mode		٠	. (
	D5	Horizontal S	Sync. (RG	B I/F) On	′Off.	'0' = Horizo'1' = Horizo	-				
Description	D4	Vertical Sync. (RGB I/F) On/Off. '0' = Vertical Sync. Line is Off ("Low"). '1' = Vertical Sync. Line is On ("High").									
	D3 Pixel Clock (CK, RGB I/F) On/Off. '0' = CK line is Off ("Low"). '1' = CK line is On ("High").										
	D2	Data Enable	e (DE, RG	B I/F)) Oi	n/Off.	'0' = DE lin '1' = DE lin		,			
	D1	Not Defined	1			for future use and are set to '0'.					
	D0	Parity Error	on DSI			'0'=No Par '1'=Parity E	•				
Restriction	-										
Flow Chart	RDDSM (0Eh)										

9.2.10 RDDSDR: Read Display Self-Diagnostic Result (0Fh)

CMD/PAs	R/W	D7	D6	D5	D4	D3	D2	D1	D0	HEX
Command	W	0	0	0	0	1	1	1	1	0F
Parameter 1	R	D7	D6	D5	D4	0	0	0	0	
	See se	splay mod ction "0 agnostic F			-	c results fo	ollowing a	SLPOUT	command	d.
	Bit	-	Descriptio	'n	-		Va	alue		
	D7	Register	Loading	Detection	See s	section "S	leep Out -	-comman	d and	
	D6	Functi	onality De	etection	self-c	liagnostic	functions	of the dis	play modu	ıle"
Description	D5	Chip Att	achment	Detection	Set to	o '0' if feat	ure unimp	lemented		
	D4	Display G	lass Breal	k Detectio	n Set to	o '0' if feat	ure unimp	lemented		
	D3				Set to	o 'O'.				
	D2		Reserved	4	Set to	o 'O'.				
	D1		10001100	4	Set to	o 'O'.				
	D0				Set to	o '0'.				
Restriction	-									
Flow Chart					RDDSD	PR (0Fh) 7:0]				

9.2.11 LPIN: Enter Sleep In Mode (10h)

CMD/PAs	R/W	D7	D6	D5	D4	D3	D2	D1	D0	HEX
Command	W	0	0	0	1	0	0	0	0	10
Description	In this r commu DBI or l content frames In this r scannir	mode, all u nication. ⁻ DSI Comr s. The ho after this mode the ng is stopp Source/G VS, Ha DC charge i	Innecessa This is the mand Moo st process command DC/DC co bed. DC/DC co bed. S, PCLK	ary blocks lowest po le remains sor contine l is sent w onverter is	s inside the ower mod s operatio ues to ser hen the d stopped,	e display e the disp nal and th nd CK, HS isplay mo	module ar play modul ne frame n 3 and VS i dule is in bscillator is	e disable e suppor nemory m nformatio Normal m	naintains it n to DPI II	nterface s = for two
Restriction	only be It will be supply It will be Mode) I	mmand h left by the e necessa voltages a e necessa before Sle	e Sleep O ary to wait and clock ary to wait eep In con	ut Comma 5msec be circuits to 120msec nmand ca	and (11h). Fore send stabilize. after sen n be sent.	ling next o	command p Out com	this is to mand (w	ep In Moc allow time	e for the
Flow Chart	It takes	120msec	Displa scree No ON/OF	o Sleep Ir SPLIN y whole bla en (Automat effect to DIS F Command in charge LCD panel	nk ic P	ter SLPIN	Sleep In M			

9.2.12 LPOUT: Exit Sleep In Mode(11h)

CMD/PAs	R/W	D7	D6	D5	D4	D3	D2	D1	D0	HEX
Command	W	0	0	0	1	0	0	0	1	11
Description	oscillato User ca and this Sleep II	or is starte	ed, and pa ource/Gate Ou VS, HS, PCL harge in the ca C:DC converte ulse for circuit i Internal Oscil send CK, ion is valie o Sleep C	tput K pacitor r nside panel Iator HS and V d at least	e. In this mining is sta <u>STOP</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>RESET</u> <u>STOP</u> <u>STAF</u> <u>STOP</u> <u>STAF</u> <u>STAF</u> <u>STAF</u> <u>STAF</u> <u>STAF</u> <u>STAF</u> <u>STAF</u> <u>STAF</u> <u>STAF</u> <u>STAF</u> <u>STAF</u> <u>STAF</u> <u>STAF</u> <u>STAF</u> <u>STAF</u> <u>STAF</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u> <u>OV</u>	rted.	CHAN CHAN	Blank C	Memory ontents	nand left
Restriction	This co only be It will be supply The dis this 5m default already The dis to alit 12	mmand ha left by the e necessa voltages a play mode sec and th and regis Sleep Ou play mode	as no effe e Sleep In ary to wait and clock ule loads here cann ter values ut –mode. ule is doir fter sendi	Commar 5msec be circuits to all display ot be any are same	nodule is a nd (10h). efore send stabilize. supplier's abnorma when thi ngnostic fu In comma	ding next of s factory of l visual eff s load is of nctions du	command default val fect on the done and y uring this s	, this is to ues to the e display i when the 5msec. It	allow time e registers mage if fa display m will be nee	e for the during ictory odule is cessary
Flow Chart	<u> </u>		s to becom	ne Sleep (Out mode	Display blanks s for 2 fr (Autom effect tr ON/c Comm In acco with the comma	whole coreen ames atic No DISP DFF ands)	mand iss	ued.	

9.2.13 NORON: Enter Normal Mode (13h)

CMD/PAs	R/W	D7	D6	D5	D4	D3	D2	D1	D0	HEX
Command	W	0	0	0	1	0	0	1	1	13
Description	Normal	display m s no abno	node is me	eans Parti	o normal n al mode c uring mod	off, Scroll			On to Nor	mal
Restriction	This co	mmand h	as no effe	ct when N	lormal Dis	splay mod	e is active	Э.		
Flow Chart	See Pa comma		and Verti	cal Scrolli	ng Definiti	ion Descri	ptions for	details of	when to u	use this

9.2.14 INVOFF: Display Inversion Off (20h)

CMD/PAs	R/W	D7	D6	D5	D4	D3	D2	D1	D0	HEX
Command	W	0	0	1	0	0	0	0	0	20
	This co	mmand is	s used to	recover fr	om displa	y inversio	n mode.			
	This co	mmand n	nakes no o	change of	f contents	of frame	memory.			
	This co	mmand d	oes not cl	nange any	/ other sta	itus.				
			Memory		(Examp	le)	Display			
Description									3	
Restriction	This co	mmand h	as no effe	ct when r	nodule is a	already in	inversion	off mode		
Flow Chart			(Ay Inverse Mode	sion	2			
					↓ lay Inve F Mode)			

9.2.15 INVON: Display Inversion On (21h)

CMD/PAs	R/W	D7	D6	D5	D4	D3	D2	D1	D0	HEX
Command	W	0	0	1	0	0	0	0	1	21
	This co	mmand is	used to e	enter into	display in [,]	version m	ode.			
	This co	mmand m	nakes no o	change of	contents	of frame r	nemory. E	Every bit is	s inverted	
	from the	e frame m	emory to	the displa	ıy.					
Description	This co	mmand d	oes not cl	hange any	/ other sta (Exampl					
				memor	гy	displa	y			
)
Restriction	This co	mmand h	as no effe	ect when r	nodule is	already in	inversion	on mode		
Flow Chart					play Inv DFF Mo INVON	de				
			C		v play Inv Mode	ersion				

9.2.16 ALLPOFF: All Pixel Off (22h)

CMD/PAs	R/W	D7	D6	D5	D4	D3	D2	D1	D0	HEX
Command	W	0	0	1	0	0	0	1	0	22
	This co	mmand tu	irns the d	splay par	iel black ii	n 'Sleep C	uť –mode	e and a st	atus of the	9
	'Display	y On/Off' -	-register o	an be 'on	' or 'off'.					
	This co	mmand m	nakes no o	change of	contents	of frame r	nemory.			
	This co	mmand d	oes not cl	nange any	/ other sta	tus				
					(Exai	mple)				
Description									3	>
	'All Pixe	els On', 'N	lormal Dis	play Mod	e On' or 'l	Partial Mo	de On' – (command	s are use	d to
	leave th	nis mode.	The displa	ay panel is	s showing	the conte	nt of the f	rame mer	nory after	'Normal
	Display	v Mode Or	n' and 'Pa	rtial Mode	On' -com	mands.				
Restriction	This co	mmand h	as no effe	ct when r	nodule is	already in	All Pixel	Off mode.		
Flow Chart			C	Nor	Mal Dis	OFF	ode			
		•			Black [Display				

9.2.17 ALLPON: All Pixel On (23h)

CMD/PAs	R/W	D7	D6	D5	D4	D3	D2	D1	D0	HEX
Command	W	0	0	1	0	0	0	1	1	23
	This co	mmand tu	irns the di	splay pan	el white ir	n 'Sleep o	ut ' –mode	e and a st	atus of the	e
	'Display	y On/Off' -	-register o	an be 'on	' or 'off'.					
	This co	mmand m	akes no o	change of	contents	of frame r	nemory.			
	This co	mmand d	oes not cl	nange any	v other sta	tus.				
					(Exar	nple)				
Description								*	1	
	'All Pixe	els Off', 'N	lormal Dis	play Mod	e On' or 'f	Partial Mo	de On' – o	command	s are use	d to
	leave th	nis mode.	The displ	ay is shov	ving the co	ontent of t	he frame	memory a	after 'Norn	nal
	Display	Mode Or	i' and 'Pa	rtial Mode	On' –com	nmands.				
Restriction	This co	mmand h	as no effe	ct when n	nodule is a	already in	all Pixel (On mode.		
Flow Chart					ormal D	Ļ	node			
			C			PON ↓ Displa	y			

9.2.18 DISPOFF: Display Off (28h)

CMD/PAs	R/W	D7	D6	D5	D4	D3	D2	D1	D0	HEX
Command	W	0	0	1	0	1	0	0	0	28
	This co	mmand is	s used to e	enter into	DISPLAY	OFF mod	le. In this	mode, the	e output fr	om
	Frame	Memory is	s disabled	and blan	k page ins	serted.				
	This co	mmand m	nakes no o	change of	contents	of frame r	nemory.			
	This co	mmand d	oes not cl	nange any	/ other sta	tus.				
Description	There v	will be no	abnormal	visible eff	ect on the	e display.				
Description					Exa	ample				
						\Rightarrow			5	
Restriction	This co	mmand h	as no effe	ct when n	nodule is	already in	display o	ff mode.		
Flow Chart				<	DIS	POFF	S			

9.2.19 DISPON: Display On (29h)

CMD/PAs	R/W	D7	D6	D5	D4	D3	D2	D1	D0	HEX
Command	W	0	0	1	0	1	0	0	1	29
Description	is enab This co		nakes no o oes not cl	change of nange any	contents	of frame r tus.	·		ne Frame	Memory
						\rightarrow				5
Restriction	This co	mmand h	as no effe	ct when n	nodule is	already in	display o	n mode.		
Flow Chart				< [Off M DIS DIS	play /lode 				
				\leq		lode)			

9.2.20 TEOFF: Tearing Effect Line OFF (34h)

CMD/PAs	R/W	D7	D6	D5	D4	D3	D2	D1	D0	HEX
Command	W	0	0	1	1	0	1	0	0	34
Description	This co signal li		used to t	urn OFF (Active Lo	w) the Tea	aring Effe	ct output :	signal fror	n the TE
Restriction	This co	mmand h	as no effe	ct when T	earing Ef	fect outpu	t is alread	ly OFF.		
Flow Chart				(e Output C EOFF Output O		×		

9.2.21 TEON: Tearing Effect Line ON (35h)

CMD/PAs	R/W	D7	D6	D5	D4	D3	D2	D1	D0	HEX
Command	w	0	0	1	1	0	1	0	1	35
Parameter 1	W	Х	Х	Х	Х	Х	Х	Х	М	
Description	This of The Te Effect When The Te inform Note: active	utput is no earing Eff Output Lin M=0: earing Eff Vertical T Scale M=1: earing Eff ation: Vertical C Scale	ect Outpu	d by chan On has on on't Care) It line con	ging MAD e parame sists of V- nsists of b	e DCTL bit E Iter which Blanking tvd tvd toth V-Bla	34. describe informati nking and	d H-Blank	le of the T	Γearing
Restriction		ommand I	has no ef	ect when				ady ON.		
Flow Chart				(TEON M e Output]			

9.2.22 MADCTL: Memory Access Control(36h)

CMD/PAs	R/W	D7	D6	D5	D4	D3	D2	D1	D0	HEX			
Command	w	0	0	1	1	0	1	1	0	36			
Parameter 1	w	B7	B6	0	0	B3	0	B1	B0				
	This c	ommand	defines re	ad/write	scanning	direction	of frame r	nemory.	1				
	This c	ommand	makes no	change o	on the ot	ner driver	status.						
	Bit		NA	ME			DES	CRIPTIO	N				
	B7	PAGE AI	DDRESS	ORDER ((MY)	Select f		driver sca	n directio	n on			
	B6	COLUMN	N ADDRE	SS ORDE	ER (MX)		the Sourc el module	e driver s	can direc	tion			
	В3	1=BGR color filter panel											
	B1	Flip Horiz	zontal (LR	2)		Select the Source driver scan direction on panel module							
	В0	Flip Verti	cal (GS)		Ś		Select the Gate driver scan direction on panel module						
	RGB-	BGR ORD	ER (BGF	R):									
					RGB-BO	R Order							
			B3= 0					B3= 1					
Description		SIG1 S SIG1 S RGB RG RGB RG	Driver IC IG2 IG2 B B CD pane	SIG48 RGB RGB		B3= 1 ■ RGB Driver IC RGB SIG1 SIG2 SIG480 ■ GR BGR BGR BGR BGR BGR BGR BGR BGR BGR BGR							
	Sourc	e scan se											
		Frame Marri	SS=0		Davias	r	rama Marri	SS=1		Device			
6	Top Left	Frame Memory Display Device Frame Memory Display Device Top Left T											

9.2.23 IDMOFF: Idle Mode Off (38h)

CMD/PAs	R/W	D7	D6	D5	D4	D3	D2	D1	D0	HEX
Command	W	0	0	1	1	1	0	0	0	38
Description			is used to m 16.7M		rom Idle r	node on.	In the idle	e off mode	e, LCD ca	n
Restriction	This co	ommand I	has no efl	fect when	module is	s already	in idle off	mode.		
Flow Chart				<		ff mode	>	X	2	

9.2.24 IDMON: Idle Mode On (39h)

CMD/PAs	R/W	D7	D6	D5	D4	D3	D2	D1	D0	HEX	
Command	W	0	0	1	1	1	0	0	0	39	
	reduce	ed. The p	rimary an	d the sec	o Idle mod condary c is display	olors usir			•		
Description	Memo	ry conten	te ve Die			mple)	Display		2		
Description	Memo	ry conten	ts vs. Disp	olay Color R7-R		G	7-G0		B7-B0		
		Black		0XXX			XXXX		0XXXX		
		Blue			0XXXXX 0XXXXX 1XXXXX						
		Red		1XXX			xxxx		0XXXX		
		Mager	nt	1XXX			XXXX		1XXXX		
		Greer		0XXX			XXXX		0XXXX		
		Cyan		0XXX			XXXX		1XXXX		
		Yellov		1XXXX			XXXX		0XXXX		
		White		1XXX			XXXX		1XXXX		
	X=do	n't care									
Restriction	This co	ommand I	has no eff	ect when	module is	s already	in idle on	mode.			
Flow Chart						ff mode	\rightarrow				
6											

9.2.25 COLMOD: Interface Pixel Format (3Ah)

CMD/PAs	R/W	D7	D6	D5	D4	D3	D2	D1	D0	HEX
Command	W	0	0	1	1	1	0	1	0	3A
Parameter 1	w	Х	D6	D5	D4	Х	D2	D1	D0	
Description	This command is used to define the format of RGB picture data. D6~D4 : DPI Pixel format Definition, fixed @111. D2~D0 : DBI Pixel format Definition, fixed @000. If a particular interface, enter DBI or DPI, is not used then the corresponding bits in the parameter returned from the display module undefined. Reference to: 7.3.2 RGB Data format There is no visible effect until the Frame Memory is written to. Bit/Pixel Mode									
Restriction	There	is no visit	ole effect	until the F	rame Me	mory is w	ritten to.			
Flow Chart					Set Pix Parar	el Format				

9.2.26 TESL: Set Tear Effect Scanline (44h)

CMD/PAs	R/W	D7	D6	D5	D4	D3	D2	D1	D0	HEX
Command	W	0	1	0	0	0	1	0	0	44
Parameter 1	W				TELIN	E[15:8]				
Parameter 2	W				TELIN	IE[7:0]				
Description	signal Line w changi The Te Effect The Te	hen the d ing MADC earing Eff Output Li earing Eff /ertical Tim Scale That TEL	isplay mo CTL bit B4 ect Line C ne. ect Outpu	odule read On has on it line con	lay modul ches line T e parame sists of V- t to TEMC dule is in	ELINE. T ter which Blanking Tvd	The TE sig describe: information he Tearin	gnal is not s the mod on only:	t affected le of the T	by Γearing
Restriction	The co	mmand h	nas no eff	ect when	Tearing E	Effect outp	out is alrea	ady ON.		
Flow Chart					Line N	On or Off TE On I(LSB) I(MSB) tput On				
$\langle \rangle$										

9.2.27 GETSCAN: Get the Current Scanline (45h)

CMD/PAs	R/W	D7	D6	D5	D4	D3	D2	D1	D0	HEX
Command	W	0	1	0	0	0	1	0	1	45
Parameter 1	W				SLN[15	:8](8'b0)				
Parameter 2	W				SLN[7:	0](8'b0)				
Description	The to VFP. T	tal numbe The first s	er of scan canline is	lines on a defined a	rrent scan display c as the first turned by	levice is d line of V	lefined as Sync and	s VS + VB I is denote	P + VAC	Г+
Restriction	-							•		
Flow Chart					Scanlin	CAN(45h) ne MSB	C	Ň		

9.2.28 WRDISBV: Write Display Brightness (51h)

CMD/PAs	R/W	D7	D6	D5	D4	D3	D2	D1	D0	HEX
Command	W	0	1	0	1	0	0	0	1	51
Parameter 1	W				DB∖	/[7:0]				
Description	lt shou brightr specifi	ild be che ness of the cation.	cked wha e display	at the relation is. This re	e brightne tionship b elationship value me	etween th is define	nis written d on the d	value an display m	odule	lus
	-	the high			value me		Jwest brig			
Restriction Flow Chart	-				WRDISE DBV V New Dis Luminar Value Los	play nce	0			

9.2.29 RDDISBV: Read Display Brightness Value (52h)

CMD/PAs	R/W	D7	D6	D5	D4	D3	D2	D1	D0	HEX
Command	W	0	1	0	1	0	0	1	0	52
Parameter 1	R				DB∖	/[7:0]				
Description	It shou brightr is. In prine	ild be che ness of the ciple the i	ecked wha e display. relationsh	at the rela This rela	ess value tionship b tionship is 00h value s.	etween th s defined (nis returne	play mod	ule specif	ication
Restriction	-									
Flow Chart							70			

9.2.30 WRCTRLD: Write CTRL Display (53h)

CMD/PAs	R/W	D7	D6	D5	D4	D3	D2	D1	D0	HEX
Command	w	0	1	0	1	0	0	1	1	53
Parameter 1	W	Х	Х	BCTRL	Х	DD	BL	Х	Х	
Description	BCTR display 0 = Of 1 = Or Displa DD = 0 DD = 1 BL: Ba 0 = Of 1 = Or Dimmi chang When even i	L: Brightn y. f (Brightne n (Brightne y Dimmin D: Display 1: Display acklight Ce f (Comple n ing functic ed at DD= BL bit cha	ess Contr ess regist ess regist g (DD): ((Dimming Dimming Dimming ontrol On, etely turn o on is adap =1, e.g. Bi	is on	n/Off, Th V[70]) ive, accc nual brig t circuit. brightnes 1 or 1->	nis bit is al ording to the ghtness se Control lin ss register 0.	he other p etting) nes must	be low.) lay when	s.) bit BCTR	Lis
Restriction	-				WPC	TRLD				
Flow Chart				<	BCTRL, New 0					
\mathbf{O}										

9.2.31 RDCTRLD: Read CTRL Value Display (54h)

CMD/PAs	R/W	D7	D6	D5	D4	D3	D2	D1	D0	HEX			
Command	w	0	1	0	1	0	1	0	0	54			
Parameter 1	R	0	0	BCTRL	0	DD	BL	0	0				
	This c	ommand	returns ar	nbient light	and brig	ghtness co	ontrol valu	ies, see c	hapter:				
	BCTR	L: Brightn	ess Contr	ol Block O	n/Off, Th	nis bit is a	lways use	d to switc	h brightne	ess for			
	display	/.											
	0 = Of	f											
	1 = Or	ı											
Description	Displa	y Dimmin	g (DD):					X					
	DD = (splay Dimming (DD): 0 = 0: Display Dimming is off											
	DD = '	1: Display	Dimming	is on									
	BL: Ba	cklight C	ontrol On/	Off									
	0 = Of	f (comple	tely turn o	ff backlight	t circuit)								
	1 = Or	1											
Restriction	-				X								
					Read RI	DCTRLD							
Flow Chart					Send 1	Parameter	~						
					Send 1 F	arameter							

9.2.32 RDDDB: Read DDB Start (A1h)

CMD/PAs	R/W	D7	D6	D5	D4	D3	D2	D1	D0	HEX				
Command	w	1	0	1	0	0	0	0	1	A1				
Parameter 1	R	Х	Х	Х	Х	Х	х	Х	Х					
:	R	Х	Х	Х	Х	Х	Х	Х	Х					
Parameter n	R	Х	Х	Х	Х	Х	х	Х	Х					
	This c	ommand	reads idei	ntifying ar	nd descrip	tive inforn	nation fror	m the peri	ipheral.					
	This in	formatior	ı is organi	zed in the	e Device D	escriptor	Block (DI	DB) stored	d on the					
	periph	eral. The	response	to this co	ommand re	eturns a s	equence	of bytes th	nat may b	e any				
	length	up to 64	K bytes. N	ote that t	he returne	d sequen	ce of byte	es does no	ot necess	arily				
	corres	pond to th	ne entire [DDB; it ma	ay be a po	ortion of a	larger blo	ock of data	a.					
			eturned da											
					byte of Su			ID is a un	iique valu	e				
	assign	ed to eac	h periphe	ral suppli	er by the I	MIPI orga	nization.							
	_		o / .	· · c · · ·										
	Param	ieter 2: M	S (most s	ignificant) byte of S	upplier IL	<i>.</i>							
	Parameter 3: LS (least significant) byte of Supplier Elective Data. This is a byte of													
		Parameter 3: LS (least significant) byte of Supplier Elective Data. This is a byte of information that is determined by the supplier. It could include model number or revision												
		information that is determined by the supplier. It could include model number or revision information, for example.												
	lineitii	adon, ioi	example.											
	Param	eter 4: M	S (most s	ignificant)) byte of S	upplier El	ective Da	ta						
Description	Param	ieter 5: si	ngle-byte	Escape o	or Exit Cod	le (EEC).	The code	is interpr	eted as fo	ollows:				
	- FFh	- Exit co	de – there	is no mo	ore data in	the Desc	riptor Bloc	ck						
	- 00h	- Escape	code – th	iere is sup	oplier-prop	orietary da	ata in the I	Descriptor	r Block (de	oes not				
	confor	m to any	MIPI stan	dard)										
	- Any	other val	ue – there	e is DDB (data in the	e Descript	or Block.	The forma	at and					
	interpr	etation of	this data	is docum	ented in <i>N</i>	AIPI Alliar	ice Standa	ard for De	evice Desc	criptor				
	Block	(DDB).												
	DDBs	may cont	ain many	more dat	a fields pr	oviding in	formation	about the	e peripher	al.				
	In a D	SI system	n, read ac	tivity take	s the form	of two se	eparate tra	ansaction	s across t	he bus:				
					ead DDB	Start (A1	h) from hc	ost proces	sor to per	ipheral,				
			the bus tu											
	-				of the bus		-							
					ead DDB S		-			•				
	-		-		ited by a p			_		nd.				
		-			DDB Start			-						
	beginr	ning of the	e Device L	escriptor	Block. Af	ter receivi	ing the firs	st packet a	and proce	ssing				
GH8323-i1 Datasheet

	the returned DDB data, the host processor may initiate a RDDDBCON: Read DDB
	Continue (A8h) command to access the next portion of the DDB. A RDDDBCON: Read
	DDB Continue (A8h) command begins the next read at the location following the last byte
	of the previous data read from the DDB.
	Subsequent RDDDBCON: Read DDB Continue (A8h) commands can be used to read a
	DDB or supplier-proprietary block of arbitrary size. There is, however, no obligation to
	read the entire block. The host processor may choose to stop reading after completion of
	any Read DDB xxx command.
Restriction	-
Flow Chart	Read_DDB_start DDB D1[7:0],D2[7:0], ,Dn[7:0] Any Command

9.2.33 RDDDBCON: Read DDB Continue (A8h)

CMD/PAs	R/W	D7	D6	D5	D4	D3	D2	D1	D0	HEX	
Command	W	1	0	1	0	1	0	0	0	A8	
Parameter 1	R	Х	Х	Х	Х	Х	Х	Х	Х		
:	R	Х	Х	Х	Х	Х	Х	Х	Х		
Parameter n	R	Х	Х	Х	х	Х	Х	Х	х		
Description	A RDDDB: Read DDB Start (A1h) command should be executed at least once before a RDDDBCON: Read DDB Continue (A8h) command to define the read location. Otherwise, data read with a RDDDBCON: Read DDB Continue (A8h) command is undefined.										
Restriction	-										
Flow Chart		- Read_DDB_continue DDB D1[7:0],D2[7:0],,Dn[7:0] Any Command									

9.2.34 RDID1: Read ID1 (DAh)

CMD/PAs	R/W	D7	D6	D5	D4	D3	D2	D1	D0	HEX	
Command	W	1	1	0	1	1	0	1	0	DA	
Paameter 1	R			moo	dule's mar	nufacturer	[7:0]				
Description	This read byte identifies the LCD module's manufacturer. It is specified by display supplier and for xx is defined as xxHEX.										
Restriction	-	-									
Flow Chart		Read ID1 Send 1 parameter									

9.2.35 RDID2: Read ID2 (DBh)

CMD/PAs	R/W	D7	D6	D5	D4	D3	Dź	2	D1	D0	HEX
Command	W	1	1	0	1	1	0		1	1	DB
Parameter 1	R LCD module/driver version [7:0]										
	supplie	This read byte is used to track the LCD module/driver version. It is defined by display supplier and changes each time a revision is made to the display, material or construction specifications. See Table:									
		ID Byte Value V[7:0]VersionChanges80h									
Description		81h									
					82h						
					83h						
					84h						
					85h						
	X= Do	n't care					K				
Restriction	-										
Flow Chart		Read ID2 Send 1 parameter									

9.2.36 RDID3: Read ID3 (DCh)

CMD/PAs	R/W	D7	D6	D5	D4	D3	D2	D1	D0	HEX	
Command	w	1	1	0	1	1	1	0	0	DC	
Parameter 1	R			LC	D module	/driver ID[7:0]				
Description	This read byte identifies the LCD module/driver. It is specified by display supplier and for this LCD project module is defined as xxHEX.										
Restriction	-										
Flow Chart		Read ID13 Send 1 parameter									

10 Electrical Specifications

10.1 Absolute maximum ratings

Symbol	Parameter	Unit	Value	Note
VCI	Analog Supply Voltage	V	-0.3 to +6.6	Note ^{(3) (4)}
VDDI	Interface Supply Voltage	V	-0.3 to +3.6	Note ^{(3),(4)}
VDDM	High speed interface Supply Voltage	V	-0.3 to +3.6	Note ^{(3) (5)}
VSP	Positive Voltage input	V	-0.3 to +6.6	Note ⁽⁶⁾
VSN	Negative Voltage input	V	-0.3 to -6.6	Note ⁽⁷⁾
VGH	Power Supply Voltage	V	-0.3 to +22	Note ⁽⁸⁾⁽¹⁰⁾
VGL	Power Supply Voltage	V	-0.3 to -16	Note ⁽⁹⁾⁽¹⁰⁾
Тор	Operating Temperature	°C	-40 to +85	Note ⁽¹¹⁾
Stg	Storage Temperature	°C	-55 to +110	Note ⁽¹²⁾

Note:

- 1. Permanent device damage may occur if absolute maximum conditions are exceeded.
- 2. Functional operation should be restricted to the conditions described under DC Characteristics.
- 3. VDDI, VSS must be maintained.
- 4. To make sure VDDI ≥ VSS, VCI≥ VSSA .
- 5. To make sure VDDM \geq VSSM.
- 6. To make sure VSP \geq VSSA.
- 7. To make sure VSSA ≥ VSN
- 8. To make sure VGH \geq VSSA.
- 9. To make sure VSSA ≥ VGL
- 10. VGH +|VGL| < 30V
- 11. For die and wafer products, specified up to +85°C.

This temperature specifications apply to the COG package.

10.2 DC Characteristics

10.2.1 RGB Interface DC electrical characteristics

(T_A=-40 ~ 85 °C)

ltem	Symbol	Condition	Min.	Тур.	Max.	Unit
VCI	V _{IN}	Analog Supply Voltage	2.5	-	6.6	
VDDI	VIN	Interface Supply Voltage	2.5	-	3.6	
VSP	Vin	Analog Supply Voltage	4.5	-	6.0	
VSN	V _{IN}	Analog Supply Voltage	2.5	-	-6.0	
VDDM	V _{IN}	High speed interface Supply Voltage	2.5	-	3.6	
Input high voltage	VIH	VDDI= 2.5 ~ 3.3V VCIP= 2.5 ~ 6.0V	0.7 x VDDI	-	VDDI	V
Input low voltage	VIL	VCI= 2.5 ~ 6.0V	0	-	0.3 x VDDI	V
Output high voltage (SDA, GPO)	V _{OH1}	I _{OH} = -1.0 mA	0.8 x VDDI	-	VDDI	V
Output low voltage (SDA, GPO)	V _{OL1}	VDDI= 2.5 ~ 3.3V I _{OL} = 1.0 mA	0	-	0.2 x VDDI	V
	1	VS, HS	-	-	1	μA
Logic High level input	IIH	RESX, SCL, CSX,	-	-	1	μΑ
current	1	DB[230], SDA	-	-	1	μA
	I _{IHD}	DB[230]	-	-	1	μΑ
		VS, HS	-1	-		μΑ
Logic Low level input	IIL	RESX, CSX, SCL	-1	-		μΑ
current		DB[230], SDA	-1	-		μA
	I _{ILD}	DB[230]	-1	-		μA
Current consumption standby mode (VCIP/VCI-VSS)	I _{ST(VDD)}	VCI/VDDM=3.3V,	-	TBD	-	μΑ

Current consumption standby mode (VDDI– VSS)	I _{ST(VDDI)}	VDDI=3.3V TA =25°C	-	TBD	-	μA
Current consumption during Deep-standby mode (VCIP/VCI-VSS)	I _{DP-ST(VDD)}	VCI/VDDM=3.3V, VDDI=3.3V TA	-	TBD	-	μA
Current consumption during Deep-standby mode (VDDI– VSS)	I _{DP-ST(VDDI)}	0500	-	TBD	-	μA

10.2.2 LVDS DC electrical characteristics

(T_A=-40 ~ 85 °C)

₄=-40 ~ 85 °C)		r				
Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Differential input high threshold voltage	Rx _{VTH}	Rx _{vcm} =1.2V	+0.1	0.2	0.3	V
Differential input low threshold voltage	Rx _{VTL}		-0.3	-0.2	-0.1	V
Input voltage range (singled-end)	Rx _{vin}		0.7	-	1.7	V
Differential input common mode voltage	Rxvcm	VID =0.2	1	1.2	1.4	V
Differential input impedance	ZID		80	100	125	ohm
Differential input voltage	 VID		0.2		0.6	V
Differential input leakage current			-10	-	+10	uA
LVDS Digital Stand-by Current	I _{STLVDS}	Clock & all Functions are stopped	-	TBD	-	uA

Table 10.3: LVDS DC characteristic

Single-End Signals

Figure 10.1: LVDS input timings

10.3 AC Characteristics

10.3.1 Reset input timings

Figure 10.2: Reset input timings

Symbol	Parameter	Related pins	Min.	Max.	Unit
t _{RW}	Reset "L" pulse width ⁽²⁾	RESX	20		μs
4		-	1	5 ⁽⁵⁾	ms
t _{RT}	Reset complete time ⁽³⁾	-		120 ^{(6) (7) (8)}	ms

Note:

- 1. The reset complete time also required time for loading ID bytes from OTP to registers. This loading is done every time when there is HW reset complete time (t_{RT}) within 5 ms after a rising edge of RESX.
- 2. Spike due to an electrostatic discharge on RESX line does not cause irregular system reset according to the table below.

RESX Pulse	Action
Shorter than 15 µs	Reset Rejected
Longer than 20 µs	Reset
Between 15 µs and 20 µs	Reset Start

- 3. During the resetting period, the display will be blanked (The display is entering blanking sequence, which maximum time is 120 ms, when Reset Starts in Sleep Out –mode. The display remains the blank state in Sleep In –mode) and then returns to Default condition for H/W reset.
- 4. Spike Rejection also applies during a valid reset pulse as shown below:

Table 10.4: Reset timings

- 1. When Reset is applied during Sleep In Mode.
- 2. When Reset is applied during Sleep Out Mode.
- 3. is necessary to wait 5msec after releasing RESX before sending commands. Also Sleep Out command cannot be sent for 120msec.
- 4. After Sleep Out command, it is necessary to wait 120msec then send RESX.

10.3.2 SPI electronic characteristic

Figure 10.3: SPI interface AC characteristics

(T_A=25°C, VDDI=3.3V, VCI=3.3V)

Signal	Symbol	Parameter	Min.	Max.	Unit	Description
CSX	t _{css} t _{csh}	Chip select setup time (Write) Chip select setup time (Read)	40 40	- -	ns	-
SCL (Write)	t _{wc} t _{wrh} t _{wrl}	Write cycle Control pulse "H" duration Control pulse "L" duration	100 40 40	ŀ	ns	-
SCL (Read)	t _{rc} t _{rdh} t _{rdl}	Read cycle Control pulse "H" duration Control pulse "L" duration	150 60 60		ns	-
SDA (Write)	t _{ds} t _{dt}	Data setup time Data hold time	30 30	-	ns	Note ⁽¹⁾
SDA (Read)	t _{acc} t _{od}	Read access time Output disable time	- 10	35 50	ns	

Note:

- 1. For maximum C_{L} =30pF, for minimum C_{L} =8pF.
- 2. The input signal rise time and fall time (tr, tf) is specified at 15 ns or less.
- 3. Logic high and low levels are specified as 30% and 70% of VDDI for Input signals.

Table 10.5: SPI interface AC characteristics

10.3.3 LVDS electronic characteristics

Figure 10.4: LVDS AC characteristics

TSW: Strobe width (Internal data sampling window)

Rspos : Receiver strobe position

TRSKM : Receiver strobe margin

Signal	Symbol	Min.	Тур	Max	Unit	Description
Clock frequency	Rx _{FCLK}	30		TBD	MHz	Refer to input timing table for each display resolution
Input data skew margin	T _{RSKM}	50		-	ps	VID = 200mV RxVCM = 1.2V RxFCLK = 81MHz
Clock high time	TLVCH	-	4/(7x Rx _{FCLK})	-	ns	-
Clock low time	TLVCL	-	3/(7xRx _{FCLK})	-	ns	
PLL wake-up time	T _{en} PLL	-		150	us	

Table 10.6: LVDS AC characteristics

10.3.4 DSI D-PHY electronic characteristics

The Description of D-PHY Layer

In general, the DSI - PHY may contain the following electrical functions: Low-Power Receiver (LP-RX), High-Speed Receiver (HS-RX), the Low-Power Contention Detector (LP-CD), and Low Power Transmitter (LP-TX). Figure 11.5 shows the complete set of electronic functions required for a fully featured PHY transceiver.

Figure 10.5: Electronic functions of a D-PHY transceiver

Figure 11.6 shows both the HS and LP signal levels of electronic characteristics, respectively. Where, the HS receiver utilizes low-voltage swing differential signaling. The LP transmitter and LP receiver utilize low-voltage swing single signaling. Because the HS signaling levels are below the LP low-level input threshold, Lane switches between Low-Power and High-Speedmode during normal operation.

Figure 10.6: HS and LP signal levels

The Electronic Characteristics of Low-Power Transmitter (TX)

The Low-Power TX shall be a slew-rate controlled push-pull driver. It is used for driving the Lines in all Low-Power modes. Hence, it is important to keep static power consumption of a LP TX be as low as possible. Under tables list DC and AC characteristic for Low power transmitter.

Parameter	Description	Min.	Тур.	Max.	Unit	Note
V _{OH}	Thevenin output high level	1.1	1.2	1.3	V	-
V _{OL}	Thevenin output low level	-50	-	50	mV	
Z _{OLP}	Output impedance of LP-TX	110	-	-	Ω	(1)

Note: (1)Though no maximum value for Z_{OLP} is specified, the LP transmitter output impedance shall ensure the t_{RLP}/t_{FLP} specification is met.

Parameter	Description	Min.	Тур.	Max.	Unit	Note
$t_{RLP}/_{tFLP}$	15%-85% rise time and fall time	-	-	25	ns	(1)
T _{LP-PER-TX}	Period of the LP exclusive-OR clock	90			ns	
	Slew rate @ CLOAD = 0pF	30	-	500	mV/ns	(1),(3),(5),(6)
	Slew rate @ CLOAD = 5pF	-	-	300	mV/ns	(1),(3),(5),(6)
	Slew rate @ CLOAD = 20pF	-		250	mV/ns	(1),(3),(5),(6)
	Slew rate @ CLOAD = 70pF	-		150	mV/ns	(1),(3),(5),(6)
δV/δt _{SR}	Slew rate @ CLOAD = 0 to 70pF (Rising Edge Only)	30	-	ŀ	mV/ns	(1),(3),(7)
	Slew rate @ CLOAD = 0 to 70pF (Rising Edge Only)	30-0.075 * (VO, INST-700)	1	-	mV/ns	(1),(8),(9)
	Slew rate @ CLOAD = 0 to 70pF (Falling Edge Only)	30	-	-	mV/ns	(1),(2),(3)
C_{LOAD}	Load capacitance	-	-	70	pF	-

Table 10.7: LP-TX DC Specifications

Note:

2. When the output voltage is between 400 mV and 930 mV.

- 3. Measured as average across any 50 mV segment of the output signal transition.
- 4. This parameter value can be lower than TLPX due to differences in rise vs. fall signal slopes and trip levels and mismatches between Dp and Dn LP transmitters.
- 5. This value represents a corner point in a piecewise linear curve.
- 6. When the output voltage is in the range specified by VPIN(absmax).
- 7. When the output voltage is between 400 mV and 700 mV.
- 8. Where VO,INST is the instantaneous output voltage, VDP or VDN, in millivolts.

9. When the output voltage is between 700 mV and 930 mV.

Table 10.8: LP-TX AC Specifications

^{1.} CLOAD includes the low-frequency equivalent transmission line capacitance. The capacitance of TX and RX are assumed to always be <10pF. The distributed line capacitance can be up to 50pF for a transmission line with 2ns delay.

The Electronic Characteristics of Receiver (RX)

This part includes two parts which Low-Power RX and High-Speed RX. Because they have differential DC and AC characteristic, first to describe LP-RX then describe HS-RX.

Low-Power Receiver (RX)

The low power receiver is an un-terminated, single-ended receiver circuit. The LP receiver is used to detect the Low-Power state on each pin. For high robustness, the LP receiver shall filter out noise pulses and RF interference. It is recommended the implementer optimize the LP receiver design for low power. The LP receiver shall reject any input glitch when the glitch is smaller than eSPIKE. The filter shall allow pulses wider than TMIN to propagate through the LP receiver. The Figure 11.7 shows Input Glitch Rejection of Low-Power RX. In addition, under tables list DC and AC characteristic for LP-RX.

Figure 10.7: Input Glitch Rejections of Low-Power Receivers

Parameter	Description	Min.	Тур.	Max.	Unit	Note
V _{IH}	Logic 1 input threshold	880	-	-	mV	-
V _{IL}	Logic 0 input threshold, not in ULP state	-	-	550	mV	-

Table 10.9: LP-RX DC Specifications

Parameter	Description	Min.	Тур.	Max.	Unit	Note
e _{SPIKE}	Input pulse rejection	-	-	300	V.ps	1, 2, 3
T _{MIN}	Minimum pulse width response	20	-	-	ns	4
V _{INT}	Peak-to-peak interference voltage	-	-	200	mV	-
f _{INT}	Interference frequency	450	-	-	MHz	-

Note:

1. Time-voltage integration of a spike above VIL when being in LP-0 state or below VIH when being in LP-1 state

2. An impulse less than this will not change the receiver state.

- 3. In addition to the required glitch rejection, implementers shall ensure rejection of known RF-interferers.
- 4. An input pulse greater than this shall toggle the output.

Table 10.10: LP-RX AC Specifications

Line Contention Detection

Contention can be inferred by following conditions:

- 1. Detect an LP high fault when the LP transmitter is driving high and the pin voltage is less than VIL.
- 2. Detect an LP low fault shall be detected when the LP transmitter is driving low and the pad pin voltage is greater than VIHCD.

Parameter	Description	Min.	Тур.	Max.	Unit	Note
V _{IHCD}	Logic 1 contention threshold	450	-	-	mV	-
V _{ILCD}	Logic 0 contention threshold	-	-	200	mV	-

Table 10.11: Contention Detector DC Specifications

High-Speed Receiver (RX)

The HS receiver is a differential line receiver. It contains a switch-able parallel input termination, ZID, between the positive input pin Dp and the negative input pin Dn. Under Tables list DC and AC characteristic for HS-RX.

Parameter	Description	Min.	Тур.	Max.	Unit	Note
V _{CMRXDC}	Common-mode voltage HS receive mode	70	-	330	mV	(1),(2)
V _{IDTH}	Differential input high threshold	-	- /	70	mV	-
V _{IDTL}	Differential input low threshold	-70	-	-	mV	-
V _{IHHS}	Single-ended input high voltage	-		460	mV	(1)
V _{ILHS}	Single-ended input low voltage	-40	-	-	mV	(1)
Z _{ID}	Differential input impedance	80	100	125	Ω	-

Note:

1. Excluding possible additional RF interference of 100mV peak sine wave beyond 450MHz.

2. This table value includes a ground difference of 50mV between the transmitter and the receiver, the static common-mode level tolerance and variations below 450MHz

Table 10.12: HS Receiver DC Specifications

Parameter	Description	Min.	Тур.	Max.	Unit	Note
$\Delta V_{CMRX(HF)}$	Common mode interference beyond 450 MHz	-	-	100	mV_{pp}	(1)
C _{CM}	Common mode termination	-	-	60	pF	(2)

Note:

1. Δ VCMRX(HF) is the peak amplitude of a sine wave superimposed on the receiver inputs.

2. For higher bit rates a 14pF capacitor will be needed to meet the common-mode return loss specification.

Table 10.13: HS Receiver AC Specifications

High-Speed Data-Clock Timing

This section specifies the required timings on the high-speed signaling interface independent of the electrical characteristics of the signal. The PHY is a source synchronous interface in the Forward direction. In either the Forward or Reverse signaling modes there shall be only one clock source. In the Reverse direction, Clock is sent in the Forward direction and one of four possible edges is used to launch the data.

The Master side of the Link shall send a differential clock signal to the Slave side to be used for data sampling. This signal shall be a DDR (half-rate) clock and shall have one transition per data bit time. All timing relationships required for correct data sampling are defined relative to the clock transitions. Therefore, implementations may use frequency spreading modulation on the clock to reduce EMI.

The DDR clock signal shall maintain a quadrature phase relationship to the data signal. Data shall be sampled on both the rising and falling edges of the Clock signal. The term "rising edge" means "rising edge of the differential signal, i.e. CLKP – CLKN, and similarly for "falling edge". Therefore, the period of the Clock signal shall be the sum of two successive instantaneous data bit times. This relationship is shown in Figure 10.8.

Figure 10.8: DDR Clock Definition

The same clock source is used to generate the DDR Clock and launch the serial data. Since the Clock and Data signals propagate together over a channel of specified skew, the Clock may be used directly to sample the Data lines in the receiver. Such a system can accommodate large instantaneous variations in UI.

The allowed instantaneous UI variation can cause large, instantaneous data rate variations. Therefore, devices shall either accommodate these instantaneous variations with appropriate FIFO logic outside of the PHY or provide an accurate clock source to the Lane Module to eliminate these instantaneous variations.

The UIINST specifications for the Clock signal are summarized in following Table.

Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
UI instantaneous	UI _{INST})-	-	3.33	ns	(1), (2), (3), (4), (5)

Note:

- 1. This value corresponds to a minimum 300 Mbps data rate.
- 2. The minimum UI shall not be violated for any single bit period, i.e., any DDR half cycle within a databurst.
- 3. Maximum total bit rate is 700Mbps/per lane of 2 data lanes 24-bit data format
- 4. Maximum total bit rate is 700Mbps/per lane of 3 data lanes 24-bit data format
- 5. Maximum total bit rate is 500Mbps/per lane of 4 data lanes 24-bit data format

Table 10.14: Reverse HS Data Transmission Timing Parameters

The timing relationship of the DDR Clock differential signal to the Data differential signal is shown in Figure 11.9. Data is launched in a quadrature relationship to the clock such that the Clock signal edge may be used directly by the receiver to sample the received data.

The transmitter shall ensure that a rising edge of the DDR clock is sent during the first payload bit of a transmission burst such that the first payload bit can be sampled by the receiver on the rising clock edge, the second bit can be sampled on the falling edge, and all following bits can be sampled on alternating rising and falling edges.

All timing values are measured with respect to the actual observed crossing of the Clock differential signal. The effects due to variations in this level are included in the clock to data timing budget.

Receiver input offset and threshold effects shall be accounted as part of the receiver setup and hold parameters.

Data-Clock Timing Specifications

The Data-Clock timing specifications are shown in Table 11.15. Implementers shall specify a value Ul_{INST,MIN} that represents the minimum instantaneous UI possible within a High-Speed data transfer for a given implementation. Parameters in Table 11.15 are specified as a part of this value... The setup and hold times, T_{SETUP[RX]} and T_{HOLD[RX]}, respectively, describe the timing relationships between the data and clock signals. T_{SETUP[RX]} is the minimum time that data shall be present before a rising or falling clock edge and T_{HOLD[RX]} is the minimum time that data shall remain in its current state after a rising or falling clock edge. The timing budget specifications for a receiver shall represent the minimum variations observable at the receiver for which the receiver will operate at the maximum specified acceptable bit error rate.

The intent in the timing budget is to leave $0.4*UI_{INST}$, i.e. $\pm 0.2*UI_{INST}$ for degradation contributed by the interconnect.

Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
Data to Clock Setup Time [RX]	T _{SETUP[RX]}	0.15	-	-	UIINST	1
Clock to Data Hold Time [RX]	T _{HOLD[RX]}	0.15	-		UIINST	1

Note:

1. Total setup and hold window for receiver of 0.3*UIINST.

Table 10.15: Data to Clock Timing Specifications

Burst Mode Data Transmission

Figure 11.10: High-Speed Data Transmission in Bursts

Parameter	Description	Min	Тур	Max	UNIT
T _{LPX}	Transmitted length of any Low-Power state period	50	-	-	ns
T _{HS-PREPARE}	Time that the transmitter drives the Data Lane LP-00				
	Line state immediately before the HS-0 Line state	40 + 4*UI	-	85 + 6*UI	ns
	starting the HS transmission				
T _{HS-PREPARE} +	$T_{HS-PREPARE}$ + time that the transmitter drives the	145 + 10*UI		-	20
T _{HS-ZERO}	HS-0 state prior to transmitting the Sync sequence.	145 + 10 01	-		ns
T _{D-TERM-EN}	Time for the Data Lane receiver to enable the HS line			35 + 4*UI	20
	termination.	-	-	35 + 4 01	ns

GH8323-i1 Datasheet

T _{HS-SETTLE}	Time interval during which the HS receiver shall ignore any Data Lane HS transitions.	85 + 6*UI	-	145 + 10*Ul	ns
T _{HS-TRAIL}	Time that the transmitter drives the flipped differential state after last payload data bit of a HS transmission burst	Max(n*8*Ul, 60+n*4*Ul)	-	-	ns
T _{HS-EXIT}	Time that the transmitter drives LP-11 following a HS burst.	100	-	-	ns

Figure 10.11: Switching the Clock Lane between Clock Transmission and Low-Power Mode

Parameter	Description	Min	Тур	Мах	UNIT
T _{CLK-POST}	Time that the transmitter continues to send HS clock				
	after the last associated Data Lane has transitioned to	60 + 52*UI	-	-	ns
	LP Mode.				
T _{CLK-PRE}	Time that the HS clock shall be driven by the				
	transmitter prior to any associated Data Lane	8*UI	-	-	ns
	beginning the transition from LP to HS mode.				
T _{CLK-PREPARE}	Time that the transmitter drives the Clock Lane LP-00				
	Line state immediately before the HS-0 Line state	38	-	95	ns
	starting the HS transmission.				
T _{CLK-PREPARE} +	T _{CLK-PREPARE} + time that the transmitter drives the HS-0				
T _{CLK-ZERO}	state prior to starting the Clock.	300	-	-	ns
T _{CLK-TERM-EN}	Time for the Clock Lane receiver to enable the HS line				
	termination.	-	-	38	ns
T _{CLK-TRAIL}	Time that the transmitter drives the HS-0 state after the	60			
	last payload clock bit of a HS transmission burst.	60	-	-	ns
T _{HS-EXIT}	Time that the transmitter drives LP-11 following a HS	100	100		
	burst.	100	-	-	ns

11 Chip Information

11.1 Pad Assignment

Symbol	Dimension
Length (um)	27598
Width (um)	898
Thickness(um)	200 (TBD)
Input Bump width (um)	30
Input Bump Numbers	606
Output Bump width (um)	16
Output Bump Numbers	2191

南京观海微电子有限公司 GoHi Microelectronics Co., Ltd.

Symbol	Dimension
A1	39
A2	120
A3	21
A4	61
A5	30
A6	10
A7	395
A8	93
A9	40

Symbol	Dimension	
B1	39	
B2	120	
B3	30	
B4	45	
B5	20	
B6	16	
B7	49	
B8	80	
B9	20	

Symbol	Dimension
B10	80
B11	122
B12	10
B13	30
B14	15
B15	161.5
B16	161.5
B17	25

G	GH8323-i1 Datasheet			
	Symbol	Dimension		
	C1	40		
	C2	73		
	C3	17		
	C4	472		
	D1	27598		
	D2	898		

11.2 Alignment Mark (Unit: um)

12 Application Diagram with Panel 12.1 GIP Application_1366RGBx768 (Normal Dual Gate Driving)

Driving method : Cas=0

Resolution	Source channel	Disable channel
1366RGBx768	S[2051:0]	-
	-	

12.2 GIP Application_1024RGBx768 (Normal Dual Gate Driving)

Driving method : Cas=0

Resolution	Source channel	Disable channel
1024RGBx768	S[767:0] and S[2051:1284]	S[1283:768]

12.3 GIP Application_1280RGBx800 (Normal Dual Gate Driving)

Driving method : Cas=0

Resolution	Source channel	Disable channel
1280RGBx800	S[959:0] and S[2051:1092]	S[1091:960]

12.4 Cascade Application1_1366RGBx768 (on LVDS mode)

Driving method : Cas=1 / Zigzag=0

12.5 Cascade Application2_1366RGBx768 (on LVDS mode)

Driving method : Cas=1 / Zigzag=1 / ZTYPE=0

12.6 Cascade Application3_1366RGBx768 (on LVDS mode)

Driving method : Cas=1 / Zigzag=1 / ZTYPE=1

12.7 Cascade Application4_1366RGBx768 (on LVDS mode)

Driving method : Cas=1 / Zigzag=0

12.8 Cascade Application5_1280RGBx800 (on LVDS mode)

Driving method : Cas=1 / Zigzag=1 / ZTYPE=0

12.9 Cascade Application6_1280RGBx800 (on LVDS mode)

Driving method : Cas=1 / Zigzag=1 / ZTYPE=1

12.10 Dual gate & GOA Application note

12.11 Normal Dual gate & GOA Application note

13 Ordering Information